On the eigenvalues of Aα-matrix of graphs

被引:16
|
作者
Liu, Shuting [1 ]
Das, Kinkar Chandra [2 ]
Shu, Jinlong [3 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
[2] Sungkyunkwan Univ, Dept Math, Suwon 16419, South Korea
[3] East China Normal Univ, Dept Comp Sci & Technol, Shanghai 200062, Peoples R China
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
Graph; The kth largest eigenvalue of A(alpha)(G); A(alpha)-spectral radius; Degree; SPECTRAL-RADIUS; A(ALPHA)-SPECTRA; CONJECTURES;
D O I
10.1016/j.disc.2020.111917
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph with adjacency matrix A(G) and let D(G) be the diagonal matrix of the degrees of G. For every real alpha is an element of [0, 1], Nikiforov defined the matrix A(alpha)(G) as A(alpha)(G) = alpha D(G)+/- (1 - alpha)A(G). In this paper, we study the kth largest eigenvalue of A(alpha) -matrix of graphs, where 1 <= k <= n. We present several upper and lower bounds on the kth largest eigenvalue of A(alpha-)matrix and characterize the extremal graphs corresponding to some of these obtained bounds. As applications, some bounds we obtained can generalize some known results on adjacency matrix and signless Laplacian matrix of graphs. Finally, we solve a problem proposed by Nikiforov (2017). (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] The closeness eigenvalues of graphs
    Lu Zheng
    Bo Zhou
    Journal of Algebraic Combinatorics, 2023, 58 : 741 - 760
  • [32] EIGENVALUES AND SEPARATION IN GRAPHS
    MILLER, Z
    PRITIKIN, D
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1993, 181 : 187 - 219
  • [33] ON THE EIGENVALUES OF FIREFLY GRAPHS
    Hong, W. X.
    You, L. H.
    TRANSACTIONS ON COMBINATORICS, 2014, 3 (03) : 1 - 9
  • [34] Eigenvalues and triangles in graphs
    Lin, Huiqiu
    Ning, Bo
    Wu, Baoyindureng
    COMBINATORICS PROBABILITY & COMPUTING, 2021, 30 (02): : 258 - 270
  • [35] On the distribution of eigenvalues of graphs
    Kelmans, A
    Yong, XR
    DISCRETE MATHEMATICS, 1999, 199 (1-3) : 251 - 258
  • [36] On the distribution of eigenvalues of graphs
    Discrete Math, 1-3 (251-258):
  • [37] INTERLACING EIGENVALUES AND GRAPHS
    HAEMERS, WH
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1995, 226 : 593 - 616
  • [38] Eigenvalues of Cayley Graphs
    Liu, Xiaogang
    Zhou, Sanming
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (02):
  • [39] On the extensional eigenvalues of graphs
    Cheng, Tao
    Feng, Lihua
    Liu, Weijun
    Lu, Lu
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 408 (408)
  • [40] Higher eigenvalues of graphs
    Kelner, Jonathan A.
    Lee, James R.
    Price, Gregory N.
    Teng, Shang-Hua
    2009 50TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE: FOCS 2009, PROCEEDINGS, 2009, : 735 - 744