On the eigenvalues of Aα-matrix of graphs

被引:16
|
作者
Liu, Shuting [1 ]
Das, Kinkar Chandra [2 ]
Shu, Jinlong [3 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
[2] Sungkyunkwan Univ, Dept Math, Suwon 16419, South Korea
[3] East China Normal Univ, Dept Comp Sci & Technol, Shanghai 200062, Peoples R China
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
Graph; The kth largest eigenvalue of A(alpha)(G); A(alpha)-spectral radius; Degree; SPECTRAL-RADIUS; A(ALPHA)-SPECTRA; CONJECTURES;
D O I
10.1016/j.disc.2020.111917
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph with adjacency matrix A(G) and let D(G) be the diagonal matrix of the degrees of G. For every real alpha is an element of [0, 1], Nikiforov defined the matrix A(alpha)(G) as A(alpha)(G) = alpha D(G)+/- (1 - alpha)A(G). In this paper, we study the kth largest eigenvalue of A(alpha) -matrix of graphs, where 1 <= k <= n. We present several upper and lower bounds on the kth largest eigenvalue of A(alpha-)matrix and characterize the extremal graphs corresponding to some of these obtained bounds. As applications, some bounds we obtained can generalize some known results on adjacency matrix and signless Laplacian matrix of graphs. Finally, we solve a problem proposed by Nikiforov (2017). (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Complementary eigenvalues of graphs
    Fernandes, Rafael
    Judice, Joaquim
    Trevisan, Vilmar
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 527 : 216 - 231
  • [22] Stability of the eigenvalues of graphs
    Zhu, P
    Wilson, RC
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, PROCEEDINGS, 2005, 3691 : 371 - 378
  • [23] On the Aα-Eigenvalues of Signed Graphs
    Pasten, Germain
    Rojo, Oscar
    Medina, Luis
    MATHEMATICS, 2021, 9 (16)
  • [24] EIGENVALUES OF GRAPHS AND DIGRAPHS
    GODSIL, CD
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1982, 46 (AUG) : 43 - 50
  • [25] ON EIGENVALUES AND EIGENVECTORS OF GRAPHS
    LEE, SL
    YEH, YN
    JOURNAL OF MATHEMATICAL CHEMISTRY, 1993, 12 (1-4) : 121 - 135
  • [26] On graphs with multiple eigenvalues
    Rowlinson, P
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 283 (1-3) : 75 - 85
  • [27] A note on the eigenvalues of graphs
    Feng, Lihua
    Yu, Guihai
    ARS COMBINATORIA, 2010, 94 : 221 - 227
  • [28] EIGENVALUES OF MOLECULAR GRAPHS
    HALL, GG
    MOLECULAR PHYSICS, 1977, 33 (02) : 551 - 557
  • [29] EIGENVALUES OF FINITE GRAPHS
    DELORME, C
    DISCRETE MATHEMATICS, 1993, 114 (1-3) : 137 - 146
  • [30] Coronae Graphs and Their α-Eigenvalues
    Tahir, Muhammad Ateeq
    Zhang, Xiao-Dong
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (04) : 2911 - 2927