Wellposedness and regularity of a variable-order space-time fractional diffusion equation

被引:14
|
作者
Zheng, Xiangcheng [1 ]
Wang, Hong [1 ]
机构
[1] Univ South Carolina, Dept Math, 1523 Greene St, Columbia, SC 29208 USA
基金
美国国家科学基金会;
关键词
Variable-order space-time fractional diffusion equation; wellposedness; regularity; NUMERICAL-SOLUTION; DIFFERENTIAL-EQUATIONS; ANOMALOUS DIFFUSION;
D O I
10.1142/S0219530520500013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove wellposedness of a variable-order linear space-time fractional diffusion equation in multiple space dimensions. In addition we prove that the regularity of its solutions depends on the behavior of the variable order (and its derivatives) at time t = 0, in addition to the usual smoothness assumptions. More precisely, we prove that its solutions have full regularity like its integer-order analogue if the variable order has an integer limit at t = 0 or have certain singularity at t = 0 like its constant-order fractional analogue if the variable order has a non-integer value at time t = 0.
引用
收藏
页码:615 / 638
页数:24
相关论文
共 50 条
  • [21] Numerical approach for solving variable-order space-time fractional telegraph equation using transcendental Bernstein series
    Hassani, H.
    Avazzadeh, Z.
    Machado, J. A. Tenreiro
    ENGINEERING WITH COMPUTERS, 2020, 36 (03) : 867 - 878
  • [22] Stability and convergence of the space fractional variable-order Schrodinger equation
    Atangana, Abdon
    Cloot, Alain H.
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [23] The Numerical Simulation of Space-Time Variable Fractional Order Diffusion Equations
    Zhang, Hongmei
    Shen, Shujun
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2013, 6 (04) : 571 - 585
  • [24] Uniqueness of determining the variable fractional order in variable-order time-fractional diffusion equations
    Zheng, Xiangcheng
    Cheng, Jin
    Wang, Hong
    INVERSE PROBLEMS, 2019, 35 (12)
  • [25] Numerical solution of variable-order space-time fractional KdV–Burgers–Kuramoto equation by using discrete Legendre polynomials
    M. H. Heydari
    Z. Avazzadeh
    C. Cattani
    Engineering with Computers, 2022, 38 : 859 - 869
  • [26] A space-time spectral approximation for solving nonlinear variable-order fractional convection-diffusion equations with nonsmooth solutions
    Amin, A. Z.
    Abdelkawy, M. A.
    Hashim, I
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2023, 34 (03):
  • [27] A second-order numerical method for nonlinear variable-order fractional diffusion equation with time delay
    Li, Jing
    Kang, Xinyue
    Shi, Xingyun
    Song, Yufei
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 219 : 101 - 111
  • [28] A Meshless Method for the Variable-Order Time Fractional Telegraph Equation
    Gharian, D.
    Ghaini, F. M. Maalek
    Heydari, M. H.
    JOURNAL OF MATHEMATICAL EXTENSION, 2019, 13 (03) : 35 - 56
  • [29] Solution for a Space-time Fractional Diffusion Equation
    Liu, Qiyu
    Lv, Longjin
    PROCEEDINGS OF THE 2017 2ND INTERNATIONAL CONFERENCE ON MODELLING, SIMULATION AND APPLIED MATHEMATICS (MSAM2017), 2017, 132 : 180 - 184