Dot product representations of planar graphs

被引:0
|
作者
Kang, Ross J. [1 ]
Lovasz, Laszlo [2 ]
Muller, Tobias
Scheinerman, Edward R.
机构
[1] Univ Durham, Durham DH1 3HP, England
[2] Eotvos Lorand Univ, H-1364 Budapest, Hungary
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2011年 / 18卷 / 01期
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
EUCLIDEAN SPACES; EMBEDDINGS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph G is a k-dot product graph if there exists a vector labelling u : V (G) -> R(k) such that u(i)(T)u(j) >= 1 if and only if ij is an element of E(G). Fiduccia, Scheinerman, Trenk and Zito [Discrete Math., 1998] asked whether every planar graph is a 3-dot product graph. We show that the answer is "no". On the other hand, every planar graph is a 4-dot product graph. We also answer the corresponding questions for planar graphs of prescribed girth and for outerplanar graphs.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Contact Representations of Planar Graphs: Extending a Partial Representation is Hard
    Chaplick, Steven
    Dorbec, Paul
    Kratochvil, Jan
    Montassier, Mickael
    Stacho, Juraj
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2014, 8747 : 139 - 151
  • [42] A Limit Theorem for Scaled Eigenvectors of Random Dot Product Graphs
    Athreya, A.
    Priebe, C. E.
    Tang, M.
    Lyzinski, V.
    Marchette, D. J.
    Sussman, D. L.
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2016, 78 (01): : 1 - 18
  • [43] Vector dot product method for kinematic analysis of planar mechanism
    Hu, Weuren
    Nongye Jixie Xuebao/Transactions of the Chinese Society of Agricultural Machinery, 1993, 24 (01):
  • [44] A Limit Theorem for Scaled Eigenvectors of Random Dot Product Graphs
    Athreya A.
    Priebe C.E.
    Tang M.
    Lyzinski V.
    Marchette D.J.
    Sussman D.L.
    Sankhya A, 2016, 78 (1): : 1 - 18
  • [45] Maximum Likelihood Embedding of Logistic Random Dot Product Graphs
    O'Connor, Luke J.
    Medard, Muriel
    Feizi, Soheil
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 5289 - 5297
  • [46] T-shape visibility representations of 1-planar graphs
    Brandenburg, Franz J.
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2018, 69 : 16 - 30
  • [47] Order-Preserving 1-String Representations of Planar Graphs
    Biedl, Therese
    Derka, Martin
    SOFSEM 2017: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2017, 10139 : 283 - 294
  • [48] Labeling Dot-Cartesian and Dot-Lexicographic Product Graphs with a Condition at Distance Two
    Shao, Zhendong
    Averbakh, Igor
    Klavzar, Sandi
    COMPUTER JOURNAL, 2016, 59 (01): : 151 - 158
  • [49] An Efficient Algorithm to Compute Dot Product Dimension of Some Outerplanar Graphs
    Bahrami, Mahin
    Kiani, Dariush
    Rahmati, Zahed
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2024,
  • [50] Algorithms for diversity and clustering in social networks through dot product graphs
    Johnson, Matthew
    Paulusma, Daniel
    van Leeuwen, Erik Jan
    SOCIAL NETWORKS, 2015, 41 : 48 - 55