The Neumann eigenvalue problem for the ∞-Laplacian

被引:15
|
作者
Esposito, L. [1 ]
Kawohl, B. [2 ]
Nitsch, C. [3 ]
Trombetti, C. [3 ]
机构
[1] Dipartimento Matemat & Informat, I-84084 Fisciano, SA, Italy
[2] Univ Cologne, Inst Math, D-50923 Cologne, Germany
[3] Dipartimento Matemat & Applicaz, I-80126 Naples, Italy
关键词
Neumann eigenvalues; viscosity solutions; infinity Laplacian; POINCARE INEQUALITIES;
D O I
10.4171/RLM/697
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The first nontrivial eigenfunction of the Neumann eigenvalue problem for the p-Laplacian, suitably normalized, converges to a viscosity solution of an eigenvalue problem for the infinity-Laplacian as p -> infinity. We show among other things that the limiting eigenvalue, at least for convex sets, is in fact the first nonzero eigenvalue of the limiting problem. We then derive a number of consequences, which are nonlinear analogues of well-known inequalities for the linear (2-)Laplacian.
引用
收藏
页码:119 / 134
页数:16
相关论文
共 50 条
  • [41] On a Steklov eigenvalue problem associated with the (p, q)-Laplacian
    Barbu, Luminita
    Morosanu, Gheorghe
    [J]. CARPATHIAN JOURNAL OF MATHEMATICS, 2021, 37 (02) : 161 - 171
  • [42] The Infinity Laplacian Eigenvalue Problem: Reformulation and a Numerical Scheme
    Farid Bozorgnia
    Leon Bungert
    Daniel Tenbrinck
    [J]. Journal of Scientific Computing, 2024, 98
  • [43] Acceleration of Weak Galerkin Methods for the Laplacian Eigenvalue Problem
    Zhai, Qilong
    Xie, Hehu
    Zhang, Ran
    Zhang, Zhimin
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2019, 79 (02) : 914 - 934
  • [44] Acceleration of Weak Galerkin Methods for the Laplacian Eigenvalue Problem
    Qilong Zhai
    Hehu Xie
    Ran Zhang
    Zhimin Zhang
    [J]. Journal of Scientific Computing, 2019, 79 : 914 - 934
  • [45] ACCURACY OF THE DIFFERENCE SCHEME OF SOLVING THE EIGENVALUE PROBLEM FOR THE LAPLACIAN
    Maiko, N. V.
    Prikazchikov, V. G.
    Ryabichev, V. L.
    [J]. CYBERNETICS AND SYSTEMS ANALYSIS, 2011, 47 (05) : 783 - 790
  • [46] ON A P-LAPLACIAN EIGENVALUE PROBLEM WITH SUPERCRITICAL EXPONENT
    Zhong, Yansheng
    Li, Yongqing
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (01) : 227 - 236
  • [47] Principal eigenvalue problem for infinity Laplacian in metric spaces
    Liu, Qing
    Mitsuishi, Ayato
    [J]. ADVANCED NONLINEAR STUDIES, 2022, 22 (01) : 548 - 573
  • [48] A singular eigenvalue problem for the Dirichlet (p, q)-Laplacian
    Yunru Bai
    Nikolaos S. Papageorgiou
    Shengda Zeng
    [J]. Mathematische Zeitschrift, 2022, 300 : 325 - 345
  • [49] ON AN EIGENVALUE PROBLEM INVOLVING THE FRACTIONAL (s, p)-LAPLACIAN
    Farcaseanu, Maria
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (01) : 94 - 103
  • [50] The Infinity Laplacian Eigenvalue Problem: Reformulation and a Numerical Scheme
    Bozorgnia, Farid
    Bungert, Leon
    Tenbrinck, Daniel
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2024, 98 (02)