Principal eigenvalue problem for infinity Laplacian in metric spaces

被引:2
|
作者
Liu, Qing [1 ]
Mitsuishi, Ayato [2 ]
机构
[1] Okinawa Inst Sci & Technol Grad Univ, Geometr Partial Differential Equat Unit, Onna, Okinawa 9040495, Japan
[2] Fukuoka Univ, Fac Sci, Dept Appl Math, Fukuoka, Japan
关键词
eigenvalue problems; metric spaces; infinity Laplacian; eikonal equation; viscosity solutions; CARNOT-CARATHEODORY DISTANCE; HAMILTON-JACOBI EQUATIONS; TUG-OF-WAR; MAXIMUM PRINCIPLE; VISCOSITY SOLUTIONS; EIKONAL EQUATION; EQUIVALENCE; LIMIT;
D O I
10.1515/ans-2022-0028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is concerned with the Dirichlet eigenvalue problem associated with the infinity-Laplacian in metric spaces. We establish a direct partial differential equation approach to find the principal eigenvalue and eigenfunctions in a proper geodesic space without assuming any measure structure. We provide an appropriate notion of solutions to the infinity-eigenvalue problem and show the existence of solutions by adapting Perron's method. Our method is different from the standard limit process via the variational eigenvalue formulation for p-Laplacian in the Euclidean space.
引用
收藏
页码:548 / 573
页数:26
相关论文
共 50 条
  • [1] AN EIGENVALUE PROBLEM FOR THE INFINITY-LAPLACIAN
    Bhattacharya, Tilak
    Marazzi, Leonardo
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [2] ON THE FIRST EIGENVALUE OF THE STEKLOV EIGENVALUE PROBLEM FOR THE INFINITY LAPLACIAN
    Le, An
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2006,
  • [3] A weighted eigenvalue problem of the biased infinity Laplacian*
    Liu, Fang
    Yang, Xiao-Ping
    [J]. NONLINEARITY, 2021, 34 (02) : 1197 - 1237
  • [4] The Infinity Laplacian Eigenvalue Problem: Reformulation and a Numerical Scheme
    Farid Bozorgnia
    Leon Bungert
    Daniel Tenbrinck
    [J]. Journal of Scientific Computing, 2024, 98
  • [5] The Infinity Laplacian Eigenvalue Problem: Reformulation and a Numerical Scheme
    Bozorgnia, Farid
    Bungert, Leon
    Tenbrinck, Daniel
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2024, 98 (02)
  • [6] A weighted eigenvalue problem of the degenerate operator associated with infinity Laplacian
    Liu, Fang
    Tian, Long
    Zhao, Peibiao
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 200
  • [7] An eigenvalue problem for generalized Laplacian in Orlicz-Sobolev spaces
    Mustonen, V
    Tienari, M
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1999, 129 : 153 - 163
  • [8] Principal eigenvalue of mixed problem for the fractional Laplacian: Moving the boundary conditions
    Leonori, Tommaso
    Medina, Maria
    Peral, Ireneo
    Primo, Ana
    Soria, Fernando
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (02) : 593 - 619
  • [9] Dirichlet problem at infinity on Gromov hyperbolic metric measure spaces
    Ilkka Holopainen
    Urs Lang
    Aleksi Vähäkangas
    [J]. Mathematische Annalen, 2007, 339 : 101 - 134
  • [10] Dirichlet problem at infinity on Gromov hyperbolic metric measure spaces
    Holopainen, Ilkka
    Lang, Urs
    Vahakangas, Aleksi
    [J]. MATHEMATISCHE ANNALEN, 2007, 339 (01) : 101 - 134