Principal eigenvalue problem for infinity Laplacian in metric spaces

被引:2
|
作者
Liu, Qing [1 ]
Mitsuishi, Ayato [2 ]
机构
[1] Okinawa Inst Sci & Technol Grad Univ, Geometr Partial Differential Equat Unit, Onna, Okinawa 9040495, Japan
[2] Fukuoka Univ, Fac Sci, Dept Appl Math, Fukuoka, Japan
关键词
eigenvalue problems; metric spaces; infinity Laplacian; eikonal equation; viscosity solutions; CARNOT-CARATHEODORY DISTANCE; HAMILTON-JACOBI EQUATIONS; TUG-OF-WAR; MAXIMUM PRINCIPLE; VISCOSITY SOLUTIONS; EIKONAL EQUATION; EQUIVALENCE; LIMIT;
D O I
10.1515/ans-2022-0028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is concerned with the Dirichlet eigenvalue problem associated with the infinity-Laplacian in metric spaces. We establish a direct partial differential equation approach to find the principal eigenvalue and eigenfunctions in a proper geodesic space without assuming any measure structure. We provide an appropriate notion of solutions to the infinity-eigenvalue problem and show the existence of solutions by adapting Perron's method. Our method is different from the standard limit process via the variational eigenvalue formulation for p-Laplacian in the Euclidean space.
引用
收藏
页码:548 / 573
页数:26
相关论文
共 50 条
  • [31] The obstacle problem for the infinity fractional laplacian
    Moreno Mérida L.
    Vidal R.E.
    [J]. Rendiconti del Circolo Matematico di Palermo Series 2, 2018, 67 (1): : 7 - 15
  • [32] On Principal Fuzzy Metric Spaces
    Gregori, Valentin
    Minana, Juan-Jose
    Morillas, Samuel
    Sapena, Almanzor
    [J]. MATHEMATICS, 2022, 10 (16)
  • [33] Principal eigenvalue, maximum principles and linear stability fornonlocal diffusion equations in metric measure spaces
    Rodriguez-Bernal, Anibal
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 221
  • [34] Optimizing the principal eigenvalue of the Laplacian in a sphere with interior traps
    Cheviakov, A. F.
    Ward, M. J.
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2011, 53 (7-8) : 1394 - 1409
  • [35] Eigenvalue problem for fractional Kirchhoff Laplacian
    Tyagi, J.
    [J]. RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2018, 29 (01) : 195 - 203
  • [36] Principal eigenvalue of the fractional Laplacian with a large incompressible drift
    Bogdan, Krzysztof
    Komorowski, Tomasz
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2014, 21 (04): : 541 - 566
  • [37] MONOTONICITY OF THE PRINCIPAL EIGENVALUE OF THE p-LAPLACIAN ON AN ANNULUS
    Grecu, Andrei
    Mihailescu, Mihai
    [J]. MATHEMATICAL REPORTS, 2021, 23 (1-2): : 149 - 155
  • [38] ASYMPTOTIC ESTIMATES FOR THE PRINCIPAL EIGENVALUE OF THE LAPLACIAN IN A GEODESIC BALL
    DELGROSSO, G
    MARCHETTI, F
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 1983, 10 (01): : 37 - 50
  • [39] Principal eigenvalue of the fractional Laplacian with a large incompressible drift
    Krzysztof Bogdan
    Tomasz Komorowski
    [J]. Nonlinear Differential Equations and Applications NoDEA, 2014, 21 : 541 - 566
  • [40] Monotonicity of the principal eigenvalue of the p-Laplacian in an annulus
    Emamizadeh, B.
    Zivari-Rezapour, M.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (05) : 1725 - 1731