Multi-Scale Interactive Network With Artery/Vein Discriminator for Retinal Vessel Classification

被引:9
|
作者
Hu, Jingfei [1 ,2 ,3 ,4 ]
Wang, Hua [1 ,2 ,3 ,4 ]
Wu, Guang [2 ]
Cao, Zhaohui [2 ]
Mou, Lei [5 ]
Zhao, Yitian [5 ]
Zhang, Jicong [1 ,2 ,3 ,4 ]
机构
[1] Beihang Univ, Sch Biol Sci & Med Engn, Beijing 100191, Peoples R China
[2] Beihang Univ, Hefei Innovat Res Inst, Hefei 230012, Peoples R China
[3] Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Beijing 100083, Peoples R China
[4] Beihang Univ, Beijing Adv Innovat Ctr Big Data Based Precis Med, Beijing 100083, Peoples R China
[5] Chinese Acad Sci, Cixi Inst Biomed Engn, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Peoples R China
基金
北京市自然科学基金;
关键词
Arteries; Biomedical imaging; Veins; Blood vessels; Noise measurement; Retinal vessels; Annotations; Fundus images; multi-scale interactive; artery; vein classification; deep learning; ATHEROSCLEROSIS RISK; SEGMENTATION; SEPARATION; IMAGES;
D O I
10.1109/JBHI.2022.3165867
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Automatic classification of retinal arteries and veins plays an important role in assisting clinicians to diagnosis cardiovascular and eye-related diseases. However, due to the high degree of anatomical variation across the population, and the presence of inconsistent labels by the subjective judgment of annotators in available training data, most of existing methods generally suffer from blood vessel discontinuity and arteriovenous confusion, the artery/vein (A/V) classification task still faces great challenges. In this work, we propose a multi-scale interactive network with A/V discriminator for retinal artery and vein recognition, which can reduce the arteriovenous confusion and alleviate the disturbance of noisy label. A multi-scale interaction (MI) module is designed in encoder for realizing the cross-space multi-scale features interaction of fundus images, effectively integrate high-level and low-level context information. In particular, we also design an ingenious A/V discriminator (AVD) that utilizes the independent and shared information between arteries and veins, and combine with topology loss, to further strengthen the learning ability of model to resolve the arteriovenous confusion. In addition, we adopt a sample re-weighting (SW) strategy to effectively alleviate the disturbance from data labeling errors. The proposed model is verified on three publicly available fundus image datasets (AV-DRIVE, HRF, LES-AV) and a private dataset. We achieve the accuracy of 97.47%, 96.91%, 97.79%, and 98.18% respectively on these four datasets. Extensive experimental results demonstrate that our method achieves competitive performance compared with state-of-the-art methods for A/V classification. To address the problem of training data scarcity, we publicly release 100 fundus images with A/V annotations to promote relevant research in the community.
引用
收藏
页码:3896 / 3905
页数:10
相关论文
共 50 条
  • [31] LMFR-Net: lightweight multi-scale feature refinement network for retinal vessel segmentation
    WenHao Zhang
    ShaoJun Qu
    YueWen Feng
    [J]. Pattern Analysis and Applications, 2025, 28 (2)
  • [32] Res2Unet: A multi-scale channel attention network for retinal vessel segmentation
    Xuejian Li
    Jiaqi Ding
    Jijun Tang
    Fei Guo
    [J]. Neural Computing and Applications, 2022, 34 : 12001 - 12015
  • [33] A combination of multi-scale and attention based on the U-shaped network for retinal vessel segmentation
    Zhang, Yan
    Lan, Qingyan
    Sun, Yemei
    Ma, Chunming
    [J]. INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2024, 34 (02)
  • [34] MS-CANet: Multi-Scale Subtraction Network with Coordinate Attention for Retinal Vessel Segmentation
    Jiang, Yun
    Yan, Wei
    Chen, Jie
    Qiao, Hao
    Zhang, Zequn
    Wang, Meiqi
    [J]. SYMMETRY-BASEL, 2023, 15 (04):
  • [35] Res2Unet: A multi-scale channel attention network for retinal vessel segmentation
    Li, Xuejian
    Ding, Jiaqi
    Tang, Jijun
    Guo, Fei
    [J]. NEURAL COMPUTING & APPLICATIONS, 2022, 34 (14): : 12001 - 12015
  • [36] Attention to fine-grained information: hierarchical multi-scale network for retinal vessel segmentation
    Lyu, Chengzhi
    Hu, Guoqing
    Wang, Dan
    [J]. VISUAL COMPUTER, 2022, 38 (01): : 345 - 355
  • [37] Dual-path multi-scale context dense aggregation network for retinal vessel segmentation
    Zhou, Wei
    Bai, Weiqi
    Ji, Jianhang
    Yi, Yugen
    Zhang, Ningyi
    Cui, Wei
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 164
  • [38] Multi-scale Interactive Network for Salient Object Detection
    Pang, Youwei
    Zhao, Xiaoqi
    Zhang, Lihe
    Lu, Huchuan
    [J]. arXiv, 2020,
  • [39] MULTI-SCALE RESIDUAL NETWORK FOR IMAGE CLASSIFICATION
    Zhong, Xian
    Gong, Oubo
    Huang, Wenxin
    Yuan, Jingling
    Ma, Bo
    Li, Ryan Wen
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 2023 - 2027
  • [40] A multi-scale gated network for retinal hemorrhage detection
    Xia, Haiying
    Rao, Zengyan
    Zhou, Zuoshan
    [J]. APPLIED INTELLIGENCE, 2023, 53 (05) : 5259 - 5273