Interactions between municipal solid waste incinerator bottom ash and bacteria (Pseudomonas aeyuginosa)

被引:26
|
作者
Aouad, G. [1 ,2 ]
Crovisier, J. -L. [1 ]
Damidot, D. [2 ]
Stille, P. [1 ]
Hutchens, E. [3 ]
Mutterer, J. [4 ]
Meyer, J. -M. [5 ]
Geoffroy, V. A. [5 ]
机构
[1] Ctr Geochim Surface, Ecole & Observ Sci Terre, UMR 7517, F-67084 Strasbourg, France
[2] Ecole Mines Douai, Dept Civil & Environm Engn, F-59500 Douai, France
[3] Univ Coll Dublin, Sch Biol & Environm Sci, Dublin 4, Ireland
[4] Univ Strasbourg, Inst Biol Mol Plantes, F-67084 Strasbourg, France
[5] Univ Strasbourg, CNRS, Dept Microorganisme, UMR 7156, F-67084 Strasbourg, France
关键词
bottom ash; bacteria; alteration; bioalteration; biofilm; Pseudomonas aeruginosa;
D O I
10.1016/j.scitotenv.2008.01.017
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Municipal solid waste incinerator bottom ash (MSWI BA) can be used in road construction where it can become exposed to microbial attack, as it can be used as a source of oligoelements by bacteria. The extent of microbial colonization of the bottom ash and the intensity of microbial processes can impact the rate of leaching of potentially toxic elements. As a consequence, our objective was to highlight the mutual interactions between MSWI bottom ash and Pseudomonas aeruginosa, a common bacteria found in the environment. Experiments were carried out for 133 days at 25 degrees C using a modified soxhlet's device and a culture medium, in a closed, unstirred system with weekly renewal of the aqueous phase. The solid products of the experiments were studied using a laser confocal microscopy, which showed that biofilms formed on mineral surfaces, possibly protecting them from leaching. Our results show that the total mass loss after 133 days is systematically higher in abiotic medium than in the biotic one in proportions going from 31 to 53% depending on element. Ca and Sr show that rates in biotic medium was similar to 19% slower than in abiotic medium during the first few weeks. However, in the longer term, both rates decreased to reach similar end values after 15 weeks. By taking into account the quantities of each tracer trapped in the layers we calculate an absolute alteration rate of MSWI BA in the biotic medium (531 mu g m(-2) d(-1)) and in the abiotic one (756 mu g m(-2) d(-1)). (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:385 / 393
页数:9
相关论文
共 50 条
  • [21] ACID NEUTRALIZING CAPACITY OF MUNICIPAL WASTE INCINERATOR BOTTOM ASH
    JOHNSON, CA
    BRANDENBERGER, S
    BACCINI, P
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1995, 29 (01) : 142 - 147
  • [22] Retention and leaching of nitrite by municipal solid waste incinerator bottom ash under the landfill circumstance
    Yao, Jun
    Kong, Qingna
    Zhu, Huayue
    Long, Yuyang
    Shen, Dongsheng
    [J]. CHEMOSPHERE, 2015, 119 : 267 - 272
  • [23] Life Cycle Assessment of Bottom Ash Management from a Municipal Solid Waste Incinerator (MSWI)
    Margallo, Maria
    Aldaco, Ruben
    Irabien, Angel
    [J]. 16TH INTERNATIONAL CONFERENCE ON PROCESS INTEGRATION, MODELLING AND OPTIMISATION FOR ENERGY SAVING AND POLLUTION REDUCTION (PRES'13), 2013, 35 : 871 - 876
  • [24] Valorisation of municipal solid waste incinerator bottom ash for the production of compressed stabilised earth blocks
    Latha, Abinaya Thennarasan
    Murugesan, Balasubramanian
    Kabeer, K. I. Syed Ahmed
    [J]. CONSTRUCTION AND BUILDING MATERIALS, 2024, 423
  • [25] Binary Mixes of Self-Compacting Concrete with Municipal Solid Waste Incinerator Bottom Ash
    Simoes, Joel R.
    da Silva, Pedro R.
    Silva, Rui V.
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (14):
  • [26] Complexation of Cu with dissolved organic carbon in municipal solid waste incinerator bottom ash leachates
    Meima, JA
    Van Zomeren, A
    Comans, RNJ
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1999, 33 (09) : 1424 - 1429
  • [27] Efficient utilization of municipal solid waste incinerator bottom ash for autoclaved aerated concrete formulation
    Liu, Yiquan
    Kumar, Dhanendra
    Lim, Kang Hao
    Lai, Yi Ling
    Hu, Zhongting
    Sanalkumar, Krishnan U. Ambikakumari
    Yang, En-Hua
    [J]. JOURNAL OF BUILDING ENGINEERING, 2023, 71
  • [28] Carbonation processes in municipal solid waste incinerator bottom ash and their effect on the leaching of copper and molybdenum
    Meima, JA
    van der Weijden, RD
    Eighmy, TT
    Comans, RNJ
    [J]. APPLIED GEOCHEMISTRY, 2002, 17 (12) : 1503 - 1513
  • [29] Mechanical behavior of municipal solid waste incinerator bottom ash: Results from triaxial tests
    Ngoc Hung Le
    Abriak, Nor Edine
    Binetruy, Christophe
    Benzerzour, Mahfoud
    Sy-Tuan Nguyen
    [J]. WASTE MANAGEMENT, 2017, 65 : 37 - 46
  • [30] Salt effects of processed municipal solid waste incinerator bottom ash on vegetation and underground water
    Fuchs, B
    Track, C
    Lang, S
    Gimmler, H
    [J]. JOURNAL OF APPLIED BOTANY-ANGEWANDTE BOTANIK, 1997, 71 (5-6): : 154 - 163