Fracture properties of slag/fly ash-based geopolymer concrete cured in ambient temperature

被引:86
|
作者
Ding, Yao [1 ]
Shi, Cai-Jun [2 ]
Li, Ning [2 ]
机构
[1] Chongqing Univ, Dept Civil Engn, Chongqing, Peoples R China
[2] Hunan Univ, Coll Civil Engn, Changsha, Hunan, Peoples R China
基金
美国国家科学基金会;
关键词
Slag/FA-based geopolymer concrete (SFGC); Ambient temperature curing; Fracture property; Mechanical property; Three-point bending (TPB) test; ENGINEERED CEMENTITIOUS COMPOSITES; ALKALI-ACTIVATED CONCRETE; FLY-ASH; MECHANICAL-PROPERTIES; STRENGTH PROPERTIES; BEHAVIOR; WORKABILITY; PASTE;
D O I
10.1016/j.conbuildmat.2018.09.138
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Slag/fly ash (FA)-based geopolymer cured in ambient temperature as a green alternative to Portland cement is attracting increasing attentions. The fracture properties of slag/FA-based geopolymer concrete (SFGC) was studied by conducting three-point bending (TPB) tests on precut beams. The effects of material parameters including the alkali concentration, the modulus of alkali activator, the slag/FA mass ratio and the liquid/binder ratio on the fracture properties of SFGC were assessed. The results exhibit that the fracture behaviors of SFGC are influenced significantly by the material parameters. The fracture energy and the ultimate load of TPB tests of SFGC beams increase with the increase of the alkali concentration, the modulus of alkali activator as well as the slag/FA ratio while decrease with the increase of liquid/binder ratio. The Baiant and Becq-Giraduon model predicts well whereas the CEB-FIP model underestimates the fracture energy of SFGC beams. Besides, the characteristic length of SFGC decreases with the increase of compressive strength regardless of the mix proportion, and is higher than the prediction for Portland cement concrete (PCC) given the similar compressive strength, suggesting that SFGC might be more ductile. In addition, the relationships between compressive strength, splitting tensile strength, elastic modulus and material parameters of SFGC specimens are also discussed. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:787 / 795
页数:9
相关论文
共 50 条
  • [31] The mechanical properties of fly ash-based geopolymer concrete with alkaline activators
    Ryu, Gum Sung
    Lee, Young Bok
    Koh, Kyung Taek
    Chung, Young Soo
    CONSTRUCTION AND BUILDING MATERIALS, 2013, 47 : 409 - 418
  • [32] Effect of granulated lead smelter slag on strength of fly ash-based geopolymer concrete
    Albitar, M.
    Ali, M. S. Mohamed
    Visintin, P.
    Drechsler, M.
    CONSTRUCTION AND BUILDING MATERIALS, 2015, 83 : 128 - 135
  • [33] Compressive Strength and Microstructural Properties of Fly Ash-Based Geopolymer Concrete
    Nagalia, Gaurav
    Park, Yeonho
    Abolmaali, Ali
    Aswath, Pranesh
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2016, 28 (12)
  • [34] Effect of slag on strength, durability and microstructural characteristics of fly ash-based geopolymer concrete
    Bellum R.R.
    Al Khazaleh M.
    Pilla R.K.
    Choudhary S.
    Venkatesh C.
    Journal of Building Pathology and Rehabilitation, 2022, 7 (1)
  • [35] Influence of steel slag on strength and microstructural characteristics of fly ash-based geopolymer concrete
    Bellum, Ramamohana Reddy
    Reddy, Komma Hemanth Kumar
    Reddy, Gadikota Chennakesava
    Reddy, M. V. Ravi Kishore
    Gamini, Sridevi
    MULTISCALE AND MULTIDISCIPLINARY MODELING EXPERIMENTS AND DESIGN, 2024, 7 (06) : 5499 - 5514
  • [36] Effects of teff straw ash on the mechanical and microstructural properties of ambient cured fly ash-based geopolymer mortar for onsite applications
    Bezabih, Tajebe
    Kanali, Christopher
    Thuo, Joseph
    RESULTS IN ENGINEERING, 2023, 18
  • [37] Effects of Steel Slag on Mechanical Properties and Mechanism of Fly Ash-Based Geopolymer
    Guo, Xiaolu
    Pan, Xuejiao
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2020, 32 (02)
  • [38] Tensile performance of cast-in headed anchors in ambient-temperature cured fly ash-based geopolymer concretes with varying fracture energies
    Karmokar, Trijon
    Mohyeddin, Alireza
    Lee, Jessey
    ENGINEERING STRUCTURES, 2023, 282
  • [39] A CONSTITUTIVE MODEL FOR FLY ASH-BASED GEOPOLYMER CONCRETE
    Sarker, Prabir
    ARCHITECTURE CIVIL ENGINEERING ENVIRONMENT, 2008, 1 (04) : 113 - 120
  • [40] Fly Ash-based Geopolymer Mud Concrete Block
    Udawattha, C. D.
    Lakmini, A. V. R. D.
    Halwatura, R. U.
    2018 MORATUWA ENGINEERING RESEARCH CONFERENCE (MERCON) 4TH INTERNATIONAL MULTIDISCIPLINARY ENGINEERING RESEARCH CONFERENCE, 2018, : 583 - 588