Effects of teff straw ash on the mechanical and microstructural properties of ambient cured fly ash-based geopolymer mortar for onsite applications

被引:16
|
作者
Bezabih, Tajebe [1 ]
Kanali, Christopher [2 ]
Thuo, Joseph [3 ]
机构
[1] Pan African Univ Inst Basic Sci Technol & Innovat, Dept Civil Engn, Nairobi, Kenya
[2] Jomo Kenyatta Univ Agr & Technol JKUAT, Dept Agr & Biosyst Engn, Nairobi, Kenya
[3] Dedan Kimathi Univ Technol DeKUT, Dept Civil Engn, Nyeri, Kenya
关键词
Teff straw ash; Compressive strength; Fly ash; Cement; Geopolymer; Microstructure; Ambient curing; RICE HUSK ASH; COMPRESSIVE STRENGTH; PORTLAND-CEMENT; CURING TEMPERATURE; CONCRETE; ALKALI; SLAG; DURABILITY; EMISSIONS; REMOVAL;
D O I
10.1016/j.rineng.2023.101123
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Although geopolymer cement (GPC) is a substitute for Portland cement, its application is restricted due to the need for high-temperature curing (40-90 degrees C), which makes it challenging to utilise for onsite applications. To address this issue, the current study examined the potential of substituting fly ash (FA) with teff straw ash (TSA) in geopolymer mortars cured at ambient temperature. The findings revealed that substituting FA with TSA can eliminate the need for high-temperature curing, and the compressive strengths of FA-TSA-based geopolymer mortar mixtures cured for 28 days ranged from 45 to 53 MPa. Further, increasing the TSA content enhanced the mortar's flexural and direct tensile strengths. A teff straw ash level of 10% increased compressive, flexural, and direct tensile strengths by 40%, 59%, and 30% at 28 days, respectively. Furthermore, the mineralogical phases of the mortar after 28 days confirmed the presence of gismondine coexisting with other phases, and microstructural analysis indicates that the inclusion of TSA resulted in a denser structure. These findings suggest that TSA could be a potential substitute for FA in GPC applications to lower energy usage and environmental impact.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Influence of ferrochrome ash on mechanical and microstructure properties of ambient cured fly ash-based geopolymer concrete
    Jyotirmoy Mishra
    Bharadwaj Nanda
    Sanjaya K. Patro
    Shaswat K. Das
    Syed M. Mustakim
    Journal of Material Cycles and Waste Management, 2022, 24 : 1095 - 1108
  • [2] Influence of ferrochrome ash on mechanical and microstructure properties of ambient cured fly ash-based geopolymer concrete
    Mishra, Jyotirmoy
    Nanda, Bharadwaj
    Patro, Sanjaya K.
    Das, Shaswat K.
    Mustakim, Syed M.
    JOURNAL OF MATERIAL CYCLES AND WASTE MANAGEMENT, 2022, 24 (03) : 1095 - 1108
  • [3] Internal Curing Effects of Slag on Properties and Microstructure of Ambient-Cured Fly Ash-Based Geopolymer Mortar
    Xiao, Li
    Zhang, Chao
    Zhang, Hongen
    Jiang, Zhengwu
    Buildings, 2024, 14 (12)
  • [4] Effects of petroleum sludge ash in fly ash-based geopolymer mortar
    Kankia, Mubarak Usman
    Baloo, Lavania
    Mohammed, Bashar S.
    Hassan, Suhaimi B.
    Haruna, Sani
    Danlami, Nasiru
    Ishak, Effa Affiana
    Samahani, Wan Nurliyana
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 272
  • [5] Mechanical and microstructural properties of fly ash-based engineered geopolymer mortar incorporating waste marble powder
    Gill, Parmender
    Rathanasalam, Vijaya Sarathy
    Jangra, Parveen
    Pham, Thong M.
    Ashish, Deepankar Kumar
    ENERGY ECOLOGY AND ENVIRONMENT, 2024, 9 (02) : 159 - 174
  • [6] Mechanical and microstructural properties of fly ash-based engineered geopolymer mortar incorporating waste marble powder
    Parmender Gill
    Vijaya Sarathy Rathanasalam
    Parveen Jangra
    Thong M. Pham
    Deepankar Kumar Ashish
    Energy, Ecology and Environment, 2024, 9 : 159 - 174
  • [7] Fracture properties of slag/fly ash-based geopolymer concrete cured in ambient temperature
    Ding, Yao
    Shi, Cai-Jun
    Li, Ning
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 190 : 787 - 795
  • [8] MECHANICAL AND MICROSTRUCTURAL PROPERTIES OF THE FLY-ASH-BASED GEOPOLYMER PASTE AND MORTAR
    Zejak, Radomir
    Nikolic, Irena
    Blecic, Dragoljub
    Radmilovic, Vuk
    Radmilovic, Velimir
    MATERIALI IN TEHNOLOGIJE, 2013, 47 (04): : 535 - 540
  • [9] Role of particle size on the mechanical and microstructural properties of fly ash-based geopolymer
    Das, Dipankar
    Interactions, 2024, 245 (01)
  • [10] Experimental study of the effect of graphene on properties of ambient-cured slag and fly ash-based geopolymer paste and mortar
    Sajjad, Umer
    Sheikh, M. Neaz
    Hadi, Muhammad N. S.
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 313