An effective non-parametric method for globally clustering genes from expression profiles

被引:4
|
作者
Hou, Jingyu
Shi, Wei
Li, Gang
Zhou, Wanlei
机构
[1] Deakin Univ, Sch Informat Technol & Engn, Burwood, Vic 3125, Australia
[2] Walter & Eliza Hall Inst Med Res, Parkville, Vic 3050, Australia
关键词
bioinformatics; microarray; gene expression; clustering; data mining;
D O I
10.1007/s11517-007-0271-1
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Clustering is widely used in bioinformatics to find gene correlation patterns. Although many algorithms have been proposed, these are usually confronted with difficulties in meeting the requirements of both automation and high quality. In this paper, we propose a novel algorithm for clustering genes from their expression profiles. The unique features of the proposed algorithm are twofold: it takes into consideration global, rather than local, gene correlation information in clustering processes; and it incorporates clustering quality measurement into the clustering processes to implement non-parametric, automatic and global optimal gene clustering. The evaluation on simulated and real gene data sets demonstrates the effectiveness of the algorithm.
引用
下载
收藏
页码:1175 / 1185
页数:11
相关论文
共 50 条
  • [31] Non-Parametric Change-Point Method for Differential Gene Expression Detection
    Wang, Yao
    Wu, Chunguo
    Ji, Zhaohua
    Wang, Binghong
    Liang, Yanchun
    PLOS ONE, 2011, 6 (05):
  • [32] THE VARIANCE OF NON-PARAMETRIC TREATMENT EFFECT ESTIMATORS IN THE PRESENCE OF CLUSTERING
    Hanson, Samuel G.
    Sunderam, Adi
    REVIEW OF ECONOMICS AND STATISTICS, 2012, 94 (04) : 1197 - 1201
  • [33] A Bayesian non-parametric approach for automatic clustering with feature weighting
    Paul, Debolina
    Das, Swagatam
    STAT, 2020, 9 (01):
  • [34] Effective Visualization of Complex Vascular Structures Using a Non-Parametric Vessel Detection Method
    Joshi, Alark
    Qian, Xiaoning
    Dione, Donald P.
    Bulsara, Ketan R.
    Breuer, Christopher K.
    Sinusas, Albert J.
    Papademetris, Xenophon
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2008, 14 (06) : 1603 - 1610
  • [35] Unsupervised Clustering of Utterances using Non-parametric Bayesian Methods
    Higashinaka, Ryuichiro
    Kawamae, Noriaki
    Sadamitsu, Kugatsu
    Minami, Yasuhiro
    Meguro, Toyomi
    Dohsaka, Kohji
    Inagaki, Hirohito
    12TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2011 (INTERSPEECH 2011), VOLS 1-5, 2011, : 2092 - 2095
  • [36] A non-parametric design method for predictive control
    Chen, ZB
    Chen, L
    Li, SF
    PROCEEDINGS OF THE 3RD WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-5, 2000, : 2787 - 2790
  • [37] A non-parametric method to estimate the number of clusters
    Fujita, Andre
    Takahashi, Daniel Y.
    Patriota, Alexandre G.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 73 : 27 - 39
  • [38] A NON-PARAMETRIC CONFIDENCE-INTERVAL METHOD
    RACINEPOON, A
    GRIEVE, AP
    EUROPEAN JOURNAL OF CLINICAL PHARMACOLOGY, 1985, 29 (03) : 379 - 380
  • [39] Non-parametric method for European option bounds
    Hsuan-Chu Lin
    Ren-Raw Chen
    Oded Palmon
    Review of Quantitative Finance and Accounting, 2012, 38 (1) : 109 - 129
  • [40] A NON-PARAMETRIC METHOD OF ITEM AND TEST SCALING
    BRYDEN, MP
    EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT, 1960, 20 (02) : 311 - 315