An effective non-parametric method for globally clustering genes from expression profiles

被引:4
|
作者
Hou, Jingyu
Shi, Wei
Li, Gang
Zhou, Wanlei
机构
[1] Deakin Univ, Sch Informat Technol & Engn, Burwood, Vic 3125, Australia
[2] Walter & Eliza Hall Inst Med Res, Parkville, Vic 3050, Australia
关键词
bioinformatics; microarray; gene expression; clustering; data mining;
D O I
10.1007/s11517-007-0271-1
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Clustering is widely used in bioinformatics to find gene correlation patterns. Although many algorithms have been proposed, these are usually confronted with difficulties in meeting the requirements of both automation and high quality. In this paper, we propose a novel algorithm for clustering genes from their expression profiles. The unique features of the proposed algorithm are twofold: it takes into consideration global, rather than local, gene correlation information in clustering processes; and it incorporates clustering quality measurement into the clustering processes to implement non-parametric, automatic and global optimal gene clustering. The evaluation on simulated and real gene data sets demonstrates the effectiveness of the algorithm.
引用
收藏
页码:1175 / 1185
页数:11
相关论文
共 50 条
  • [1] An effective non-parametric method for globally clustering genes from expression profiles
    Jingyu Hou
    Wei Shi
    Gang Li
    Wanlei Zhou
    [J]. Medical & Biological Engineering & Computing, 2007, 45 : 1175 - 1185
  • [2] A NON-PARAMETRIC BAYESIAN CLUSTERING FOR GENE EXPRESSION DATA
    Wang, Liming
    Wang, Xiaodong
    [J]. 2012 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2012, : 556 - 559
  • [3] A non-parametric binarization method based on ensemble of clustering algorithms
    Bera, Suman Kumar
    Ghosh, Soulib
    Bhowmik, Showmik
    Sarkar, Ram
    Nasipuri, Mita
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (05) : 7653 - 7673
  • [4] A non-parametric method for data clustering with optimal variable weighting
    Chung, Ji-Won
    Choi, In-Chan
    [J]. INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2006, PROCEEDINGS, 2006, 4224 : 807 - 814
  • [5] A non-parametric binarization method based on ensemble of clustering algorithms
    Suman Kumar Bera
    Soulib Ghosh
    Showmik Bhowmik
    Ram Sarkar
    Mita Nasipuri
    [J]. Multimedia Tools and Applications, 2021, 80 : 7653 - 7673
  • [6] CLUES: A non-parametric clustering method based on local shrinking
    Wang, Xiologang
    Qiu, Weiliang
    Zamar, Ruben H.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 52 (01) : 286 - 298
  • [7] BnpC: Bayesian non-parametric clustering of single-cell mutation profiles
    Borgsmuller, Nico
    Bonet, Jose
    Marass, Francesco
    Gonzalez-Perez, Abel
    Lopez-Bigas, Nuria
    Beerenwinkel, Niko
    [J]. BIOINFORMATICS, 2020, 36 (19) : 4854 - 4859
  • [8] Clustering in non-parametric multivariate analyses
    Clarke, K. Robert
    Somerfield, Paul J.
    Gorley, Raymond N.
    [J]. JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY, 2016, 483 : 147 - 155
  • [9] A non-parametric approach to simplicity clustering
    Hines, Peter
    Pothos, Emmanuel M.
    Chater, Nick
    [J]. APPLIED ARTIFICIAL INTELLIGENCE, 2007, 21 (08) : 729 - 752
  • [10] Non-parametric Mixture Models for Clustering
    Mallapragada, Pavan Kumar
    Jin, Rong
    Jain, Anil
    [J]. STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, 2010, 6218 : 334 - 343