Total positivity of Riordan arrays

被引:42
|
作者
Chen, Xi [1 ]
Liang, Huyile [1 ]
Wang, Yi [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
CATALAN NUMBERS; COMBINATORICS;
D O I
10.1016/j.ejc.2014.11.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present sufficient conditions for the total positivity of Riordan arrays. As applications we show that many well-known combinatorial triangles are totally positive and many famous combinatorial numbers are log-convex in a unified approach. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:68 / 74
页数:7
相关论文
共 50 条
  • [31] On Sums, Derivatives, and Flips of Riordan Arrays
    Bang, Caroline
    Culver, Eric
    Dimitrov, Stoyan
    von Bell, Matias
    Dickson, Jessica
    Perrier, Rachel
    Sundaram, Sheila
    JOURNAL OF INTEGER SEQUENCES, 2023, 26 (02)
  • [32] Combinatorial sums through Riordan arrays
    Sprugnoli R.
    Journal of Geometry, 2011, 101 (1-2) : 195 - 210
  • [33] A Note on Krawtchouk Polynomials and Riordan Arrays
    Barry, Paul
    JOURNAL OF INTEGER SEQUENCES, 2008, 11 (02)
  • [34] On some alternative characterizations of Riordan arrays
    Merlini, D
    Rogers, DG
    Sprugnoli, R
    Verri, MC
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1997, 49 (02): : 301 - 320
  • [35] Difference Properties of Riordan Arrays and Their Applications
    Yidong SUN
    Cheng SUN
    Weichen WANG
    JournalofMathematicalResearchwithApplications, 2022, 42 (06) : 551 - 560
  • [36] A & Z Sequences for Double Riordan Arrays
    Branch, Donovan
    Davenport, Dennis
    Frankson, Shakuan
    Jones, Jazmin T.
    Thorpe, Geoffrey
    COMBINATORICS, GRAPH THEORY AND COMPUTING, SEICCGTC 2020, 2022, 388 : 33 - 46
  • [37] Riordan arrays and generalized Lagrange series
    Burlachenko, E. V.
    MATHEMATICAL NOTES, 2016, 100 (3-4) : 531 - 539
  • [38] Exponential Riordan Arrays and Permutation Enumeration
    Barry, Paul
    JOURNAL OF INTEGER SEQUENCES, 2010, 13 (09)
  • [39] Sequence characterization of almost-Riordan arrays
    Alp, Yasemin
    Kocer, E. Gokcen
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 664 : 1 - 23
  • [40] Riordan Arrays, Sheffer Sequences and "Orthogonal" Polynomials
    Della Riccia, Giacomo
    JOURNAL OF INTEGER SEQUENCES, 2008, 11 (05)