Total positivity of Riordan arrays

被引:42
|
作者
Chen, Xi [1 ]
Liang, Huyile [1 ]
Wang, Yi [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
CATALAN NUMBERS; COMBINATORICS;
D O I
10.1016/j.ejc.2014.11.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present sufficient conditions for the total positivity of Riordan arrays. As applications we show that many well-known combinatorial triangles are totally positive and many famous combinatorial numbers are log-convex in a unified approach. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:68 / 74
页数:7
相关论文
共 50 条
  • [21] Riordan arrays and related polynomial sequences
    Wang, Weiping
    Zhang, Chenlu
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 580 : 262 - 291
  • [22] Combinatorial sums and implicit Riordan arrays
    Merlini, Donatella
    Sprugnoli, Renzo
    Verri, Maria Cecilia
    DISCRETE MATHEMATICS, 2009, 309 (02) : 475 - 486
  • [23] Jordan Canonical Forms of Riordan Arrays
    Slowik, Roksana
    RESULTS IN MATHEMATICS, 2021, 76 (02)
  • [24] Generalized harmonic numbers with Riordan arrays
    Cheon, Gi-Sang
    El-Mikkawy, M. E. A.
    JOURNAL OF NUMBER THEORY, 2008, 128 (02) : 413 - 425
  • [25] Row polynomial matrices of Riordan arrays
    Mu, Lili
    Mao, Jianxi
    Wang, Yi
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 522 : 1 - 14
  • [26] Exponential Almost-Riordan Arrays
    Alp, Yasemin
    Kocer, E. Gokcen
    RESULTS IN MATHEMATICS, 2024, 79 (04)
  • [27] Riordan arrays and generalized Lagrange series
    E. V. Burlachenko
    Mathematical Notes, 2016, 100 : 531 - 539
  • [28] Jordan Canonical Forms of Riordan Arrays
    Roksana Słowik
    Results in Mathematics, 2021, 76
  • [29] Riordan arrays and harmonic number identities
    Wang, Weiping
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (05) : 1494 - 1509
  • [30] Products of Riordan arrays of finite orders
    Roksana Słowik
    Journal of Algebraic Combinatorics, 2022, 56 : 1055 - 1062