Spectral decomposition theorem in equicontinuous nonautonomous discrete dynamical systems

被引:7
|
作者
Thakkar, Dhaval [1 ]
Das, Ruchi [2 ]
机构
[1] Vadodara Inst Engn, Kotambi, Vadodara, India
[2] Univ Delhi, Dept Math, Fac Math Sci, Delhi, India
关键词
Nonautonomous discrete dynamical systems; nonwandering set; chain recurrent sets; expansiveness; shadowing property (POTP); equicontinuous dynamical system; spectral decomposition theorem; CHAIN RECURRENCE; NONCOMPACT;
D O I
10.1080/10236198.2015.1133617
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we define the notion of weak chain recurrence and study properties of weak chain recurrent sets in a nonautonomous discrete dynamical system induced by a sequence of homeomorphisms on a compact metric space. Our main result is the Smale's spectral decomposition theorem in an equicontinuous nonautonomous discrete dynamical system.
引用
收藏
页码:676 / 686
页数:11
相关论文
共 50 条
  • [21] Topological Equiconjugacy for Unimodal Nonautonomous Discrete Dynamical Systems with Limit Property
    Ermerson Araujo
    [J]. Qualitative Theory of Dynamical Systems, 2022, 21
  • [22] Spectral decomposition of contracting probabilistic dynamical systems
    Antoniou, I
    Bosco, F
    [J]. CHAOS SOLITONS & FRACTALS, 1998, 9 (03) : 401 - 418
  • [23] Spectral decomposition of expanding probabilistic dynamical systems
    Antoniou, I
    Bosco, F
    Suchanecki, Z
    [J]. PHYSICS LETTERS A, 1998, 239 (03) : 153 - 158
  • [24] COHOMOLOGY OF DECOMPOSITION AND THE MULTIPLICITY THEOREM WITH APPLICATIONS TO DYNAMICAL SYSTEMS
    Luxemburg, Leon A.
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2010, 54 (02) : 485 - 499
  • [25] A dynamical decomposition theorem
    Aarts, JM
    Fokkink, RJ
    Vermeer, J
    [J]. ACTA MATHEMATICA HUNGARICA, 2002, 94 (03) : 191 - 196
  • [26] A dynamical decomposition theorem
    J. M. Aarts
    R. J. Fokkink
    J. Vermeer
    [J]. Acta Mathematica Hungarica, 2002, 94 (3) : 191 - 196
  • [27] CHAOS IN NONAUTONOMOUS DYNAMICAL SYSTEMS
    Oprocha, Piotr
    Wilczynski, Pawel
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2009, 17 (03): : 209 - 221
  • [28] ENTROPY OF NONAUTONOMOUS DYNAMICAL SYSTEMS
    Zhu, Yujun
    Liu, Zhaofeng
    Xu, Xueli
    Zhang, Wenda
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 49 (01) : 165 - 185
  • [29] Stronger Forms of Transitivity and Sensitivity for Nonautonomous Discrete Dynamical Systems and Furstenberg Families
    Risong Li
    Yu Zhao
    Hongqing Wang
    Haihua Liang
    [J]. Journal of Dynamical and Control Systems, 2020, 26 : 109 - 126
  • [30] Nonautonomous Projected Dynamical Systems
    Cojocaru, Monica Gabriela
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 1479 - 1482