Spectral decomposition of contracting probabilistic dynamical systems

被引:4
|
作者
Antoniou, I
Bosco, F
机构
[1] Int Solvay Inst Phys, B-1050 Brussels, Belgium
[2] Int Solvay Inst Chem, B-1050 Brussels, Belgium
[3] Univ Fed Espirito Santo, Dept Fis, BR-29060900 Vitoria, ES, Brazil
关键词
D O I
10.1016/S0960-0779(97)00119-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study probabilistic couplings of a finite class of linear contractions of the unit interval. For this reason we call these systems 'contracting probabilistic dynamical systems'. The resulting system is a stationary Markov process with deterministic outcomes. Each outcome results from the application of one of the contractions. The selection of each contraction is conditioned probabilistically. We study these systems through the spectral properties of their corresponding sthocastic and Markov operators. (C) 1998 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:401 / 418
页数:18
相关论文
共 50 条
  • [1] Spectral decomposition of expanding probabilistic dynamical systems
    Antoniou, I
    Bosco, F
    Suchanecki, Z
    [J]. PHYSICS LETTERS A, 1998, 239 (03) : 153 - 158
  • [2] On Spectral Decomposition of States and Gramians of Bilinear Dynamical Systems
    Iskakov, Alexey
    Yadykin, Igor
    [J]. MATHEMATICS, 2021, 9 (24)
  • [3] Spectral decomposition of the tent maps and the isomorphism of dynamical systems
    Antoniou, I
    Qiao, B
    [J]. PHYSICS LETTERS A, 1996, 215 (5-6) : 280 - 290
  • [4] MEASURES OF CHAOS AND A SPECTRAL DECOMPOSITION OF DYNAMICAL-SYSTEMS ON THE INTERVAL
    SCHWEIZER, B
    SMITAL, J
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 344 (02) : 737 - 754
  • [5] Spectral decomposition theorem in equicontinuous nonautonomous discrete dynamical systems
    Thakkar, Dhaval
    Das, Ruchi
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2016, 22 (05) : 676 - 686
  • [6] Particle Observers for Contracting Dynamical Systems
    Bonnabel, Silvere
    Slotine, Jean-Jacques
    [J]. GEOMETRIC SCIENCE OF INFORMATION, GSI 2017, 2017, 10589 : 310 - 317
  • [7] Data-driven spectral decomposition and forecasting of ergodic dynamical systems
    Giannakis, Dimitrios
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2019, 47 (02) : 338 - 396
  • [8] Probabilistic Inference for Dynamical Systems
    Davis, Sergio
    Gonzalez, Diego
    Gutierrez, Gonzalo
    [J]. ENTROPY, 2018, 20 (09)
  • [9] Dynamical probabilistic P systems
    Pescini, D
    Besozzi, D
    Mauri, G
    Zandron, C
    [J]. INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2006, 17 (01) : 183 - 204
  • [10] A spectral decomposition of the attractor of piecewise-contracting maps of the interval
    CALDERON, A. L. F. R. E. D. O.
    CATSIGERAS, E. L. E. O. N. O. R. A.
    GUIRAUD, P. I. E. R. R. E.
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2021, 41 (07) : 1940 - 1960