Spectral decomposition of contracting probabilistic dynamical systems

被引:4
|
作者
Antoniou, I
Bosco, F
机构
[1] Int Solvay Inst Phys, B-1050 Brussels, Belgium
[2] Int Solvay Inst Chem, B-1050 Brussels, Belgium
[3] Univ Fed Espirito Santo, Dept Fis, BR-29060900 Vitoria, ES, Brazil
关键词
D O I
10.1016/S0960-0779(97)00119-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study probabilistic couplings of a finite class of linear contractions of the unit interval. For this reason we call these systems 'contracting probabilistic dynamical systems'. The resulting system is a stationary Markov process with deterministic outcomes. Each outcome results from the application of one of the contractions. The selection of each contraction is conditioned probabilistically. We study these systems through the spectral properties of their corresponding sthocastic and Markov operators. (C) 1998 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:401 / 418
页数:18
相关论文
共 50 条
  • [31] Mixed monotone decomposition of dynamical systems with application
    Chu, TG
    Huang, L
    [J]. CHINESE SCIENCE BULLETIN, 1998, 43 (14): : 1171 - 1175
  • [32] LEVELS OF STRUCTURAL DECOMPOSITION OF DYNAMICAL-SYSTEMS
    JACAK, W
    SIEROCKI, I
    [J]. INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 1985, 10 (2-3) : 177 - 186
  • [33] Probabilistic extension and logic of complex unstable dynamical systems
    Antoniou, I
    Suchanecki, Z
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (04) : 1939 - 1958
  • [34] Probabilistic forecast of nonlinear dynamical systems with uncertainty quantification
    Gu, Mengyang
    Lin, Yizi
    Lee, Victor Chang
    Qiu, Diana Y.
    [J]. Physica D: Nonlinear Phenomena, 2024, 457
  • [35] Mixed monotone decomposition of dynamical systems with application
    CHU Tianguang and HUANG Lin Department of Mechanics and Engineering Science
    [J]. Science Bulletin, 1998, (14) : 1171 - 1175
  • [36] Proper Orthogonal Decomposition in Decoupling Dynamical Systems
    Pham, T.
    Tromeur-Dervout, D.
    [J]. PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED, GRID AND CLOUD COMPUTING FOR ENGINEERING, 2011, 95
  • [37] A method for ACE decomposition of parameters of dynamical systems
    Boker, Steve
    Horn, Erin
    Meyer, M.
    Turkheimer, Eric
    [J]. BEHAVIOR GENETICS, 2014, 44 (06) : 649 - 649
  • [38] Probabilistic Analysis of Bifurcations in Stochastic Nonlinear Dynamical Systems
    Mirzakhalili, Ehsan
    Epureanu, Bogdan I.
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2019, 14 (08):
  • [39] Probabilistic forecast of nonlinear dynamical systems with uncertainty quantification
    Gu, Mengyang
    Lin, Yizi
    Lee, Victor Chang
    Qiu, Diana Y.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2024, 457
  • [40] On Privacy of Dynamical Systems: An Optimal Probabilistic Mapping Approach
    Murguia, Carlos
    Shames, Iman
    Farokhi, Farhad
    Nesic, Dragan
    Poor, H. Vincent
    [J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2021, 16 : 2608 - 2620