WEIGHTED MOORE-PENROSE INVERSES OF ADJOINTABLE OPERATORS ON INDEFINITE INNER-PRODUCT SPACES

被引:1
|
作者
Qin, Mengjie [1 ]
Xu, Qingxiang [1 ]
Zamani, Ali [2 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[2] Farhangian Univ, Dept Math, Tehran, Iran
基金
中国国家自然科学基金;
关键词
Hilbert C*-module; weighted Moore-Penrose inverse; indefinite inner-product space; MATRICES;
D O I
10.4134/JKMS.j190306
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Necessary and sufficient conditions are provided under which the weighted Moore-Penrose inverse A(MN)(dagger) exists, where A is an adjointable operator between Hilbert C*-modules, and the weights M and N are only self-adjoint and invertible. Relationship between weighted Moore-Penrose inverses A(MN)(dagger) is clarified when A is fixed, whereas M and N are variable. Perturbation analysis for the weighted Moore-Penrose inverse is also provided.
引用
收藏
页码:691 / 706
页数:16
相关论文
共 50 条
  • [31] Sub-direct sum of operators on Hilbert spaces and nonnegative Moore-Penrose inverses
    Jose S.
    Sivakumar K.C.
    [J]. Acta Scientiarum Mathematicarum, 2015, 81 (1-2): : 215 - 240
  • [32] Moore-Penrose inverses of Gram operators on Hilbert C*-modules
    Moslehian, M. S.
    Sharifi, K.
    Forough, M.
    Chakoshi, M.
    [J]. STUDIA MATHEMATICA, 2012, 210 (02) : 189 - 196
  • [33] A new characterization of nonnegativity of Moore-Penrose inverses of Gram operators
    K. C. Sivakumar
    [J]. Positivity, 2009, 13 : 277 - 286
  • [34] CONE NONNEGATIVITY OF MOORE-PENROSE INVERSES OF UNBOUNDED GRAM OPERATORS
    Kurmayya, T.
    Ramesh, G.
    [J]. ANNALS OF FUNCTIONAL ANALYSIS, 2016, 7 (02): : 338 - 347
  • [35] Projection methods for computing Moore-Penrose inverses of unbounded operators
    S. H. Kulkarni
    G. Ramesh
    [J]. Indian Journal of Pure and Applied Mathematics, 2010, 41 : 647 - 662
  • [36] PROJECTION METHODS FOR COMPUTING MOORE-PENROSE INVERSES OF UNBOUNDED OPERATORS
    Kulkarni, S. H.
    Ramesh, G.
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2010, 41 (05): : 647 - 662
  • [37] A new kind of weighted Moore-Penrose inverses of incline matrices
    Huang, Yu
    Liao, Zu-Hua
    [J]. PROCEEDINGS OF THE 14TH CONFERENCE OF INTERNATIONAL LINEAR ALGEBRA SOCIETY, 2007, : 89 - 93
  • [38] Weighted Moore-Penrose inverses of arbitrary-order tensors
    Behera, Ratikanta
    Maji, Sandip
    Mohapatra, R. N.
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (04):
  • [39] A new characterization of nonnegativity of Moore-Penrose inverses of Gram operators
    Sivakumar, K. C.
    [J]. POSITIVITY, 2009, 13 (01) : 277 - 286
  • [40] Weighted Moore-Penrose inverses and fundamental theorem of even-order tensors with Einstein product
    Jun Ji
    Yimin Wei
    [J]. Frontiers of Mathematics in China, 2017, 12 : 1319 - 1337