A new characterization of nonnegativity of Moore-Penrose inverses of Gram operators

被引:6
|
作者
Sivakumar, K. C. [1 ]
机构
[1] Indian Inst Technol Madras, Dept Math, Madras 600036, Tamil Nadu, India
关键词
Gram operator; nonnegative Moore-Penrose inverse; acute cones; obtuse cones; MATRICES; MONOTONICITY; CONE;
D O I
10.1007/s11117-008-2167-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, a new characterization for the nonnegativity of Moore-Penrose inverses of Gram operators over Hilbert spaces is presented. The main result generalizes the existing result for invertible Gram operators.
引用
收藏
页码:277 / 286
页数:10
相关论文
共 50 条
  • [1] A new characterization of nonnegativity of Moore-Penrose inverses of Gram operators
    K. C. Sivakumar
    Positivity, 2009, 13 : 277 - 286
  • [2] A characterization of cone nonnegativity of Moore-Penrose inverses of unbounded Gram operators
    Bhat, Archana
    Kurmayya, T.
    POSITIVITY, 2022, 26 (04)
  • [3] CONE NONNEGATIVITY OF MOORE-PENROSE INVERSES OF UNBOUNDED GRAM OPERATORS
    Kurmayya, T.
    Ramesh, G.
    ANNALS OF FUNCTIONAL ANALYSIS, 2016, 7 (02): : 338 - 347
  • [4] A characterization of cone nonnegativity of Moore–Penrose inverses of unbounded Gram operators
    Archana Bhat
    T. Kurmayya
    Positivity, 2022, 26
  • [5] Nonnegative Moore-Penrose inverses of gram operators
    Kurmayya, T.
    Sivakumar, K. C.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 422 (2-3) : 471 - 476
  • [6] Moore-Penrose inverses of Gram operators on Hilbert C*-modules
    Moslehian, M. S.
    Sharifi, K.
    Forough, M.
    Chakoshi, M.
    STUDIA MATHEMATICA, 2012, 210 (02) : 189 - 196
  • [7] Moore-Penrose Inverse of a Gram Matrix and Its Nonnegativity
    T. Kurmayya
    K. C. Sivakumar
    Journal of Optimization Theory and Applications, 2008, 139 : 201 - 207
  • [8] Moore-Penrose inverse of a Gram matrix and its nonnegativity
    Kurmayya, T.
    Sivakumar, K. C.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2008, 139 (01) : 201 - 207
  • [9] The Moore-Penrose inverses of lower triangular operators
    Li, Yuan
    LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (03): : 229 - 235
  • [10] Norms of Moore-Penrose Inverses of Fredholm Toeplitz Operators
    A. Rogozhin
    Integral Equations and Operator Theory, 2007, 57 : 283 - 301