Personality first in emotion: a deep neural network based on electroencephalogram channel attention for cross-subject emotion recognition

被引:8
|
作者
Tian, Zhihang [1 ,2 ]
Huang, Dongmin [1 ,2 ]
Zhou, Sijin [1 ,2 ]
Zhao, Zhidan [1 ,2 ]
Jiang, Dazhi [1 ,2 ]
机构
[1] Shantou Univ, Sch Engn, Dept Comp Sci, Shantou 515063, Peoples R China
[2] Shantou Univ, Key Lab Intelligent Mfg Technol, Minist Educ, Shantou 515063, Peoples R China
来源
ROYAL SOCIETY OPEN SCIENCE | 2021年 / 8卷 / 08期
基金
中国国家自然科学基金;
关键词
cross subject; electroencephalogram emotion recognition; personality first; deep neural network; INDIVIDUAL-DIFFERENCES;
D O I
10.1098/rsos.201976
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In recent years, more and more researchers have focused on emotion recognition methods based on electroencephalogram (EEG) signals. However, most studies only consider the spatio-temporal characteristics of EEG and the modelling based on this feature, without considering personality factors, let alone studying the potential correlation between different subjects. Considering the particularity of emotions, different individuals may have different subjective responses to the same physical stimulus. Therefore, emotion recognition methods based on EEG signals should tend to be personalized. This paper models the personalized EEG emotion recognition from the macro and micro levels. At the macro level, we use personality characteristics to classify the individuals' personalities from the perspective of 'birds of a feather flock together'. At the micro level, we employ deep learning models to extract the spatio-temporal feature information of EEG. To evaluate the effectiveness of our method, we conduct an EEG emotion recognition experiment on the ASCERTAIN dataset. Our experimental results demonstrate that the recognition accuracy of our proposed method is 72.4% and 75.9% on valence and arousal, respectively, which is 10.2% and 9.1% higher than that of no consideration of personalization.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Contrastive Learning of Subject-Invariant EEG Representations for Cross-Subject Emotion Recognition
    Shen, Xinke
    Liu, Xianggen
    Hu, Xin
    Zhang, Dan
    Song, Sen
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2023, 14 (03) : 2496 - 2511
  • [42] Enhancing cross-subject emotion recognition precision through unimodal EEG: a novel emotion preceptor model
    Dong, Yihang
    Jing, Changhong
    Mahmud, Mufti
    Ng, Michael Kwok-Po
    Wang, Shuqiang
    Brain Informatics, 2024, 11 (01)
  • [43] Electroencephalogram signals emotion recognition based on convolutional neural network-recurrent neural network framework with channel-temporal attention mechanism for older adults
    Jiang, Lei
    Siriaraya, Panote
    Choi, Dongeun
    Zeng, Fangmeng
    Kuwahara, Noriaki
    FRONTIERS IN AGING NEUROSCIENCE, 2022, 14
  • [44] FMLAN: A novel framework for cross-subject and cross-session EEG emotion recognition
    Yu, Peng
    He, Xiaopeng
    Li, Haoyu
    Dou, Haowen
    Tan, Yeyu
    Wu, Hao
    Chen, Badong
    Biomedical Signal Processing and Control, 2025, 100
  • [45] Adversarial Discriminative Domain Adaptation and Transformers for EEG-based Cross-Subject Emotion Recognition
    Sartipi, Shadi
    Cetin, Mujdat
    2023 11TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING, NER, 2023,
  • [46] Multi-Classifier Fusion Based on MI-SFFS for Cross-Subject Emotion Recognition
    Yang, Haihui
    Huang, Shiguo
    Guo, Shengwei
    Sun, Guobing
    ENTROPY, 2022, 24 (05)
  • [47] Easy Domain Adaptation for cross-subject multi-view emotion recognition
    Chen, Chuangquan
    Vong, Chi-Man
    Wang, Shitong
    Wang, Hongtao
    Pang, Miaoqi
    KNOWLEDGE-BASED SYSTEMS, 2022, 239
  • [48] Generalized Contrastive Partial Label Learning for Cross-Subject EEG-Based Emotion Recognition
    Li, Wei
    Fan, Lingmin
    Shao, Shitong
    Song, Aiguo
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 11
  • [49] Multi-source Selective Graph Domain Adaptation Network for cross-subject EEG emotion recognition
    Wang, Jing
    Ning, Xiaojun
    Xu, Wei
    Li, Yunze
    Jia, Ziyu
    Lin, Youfang
    Neural Networks, 2024, 180
  • [50] Plug-and-Play Domain Adaptation for Cross-Subject EEG-based Emotion Recognition
    Zhao, Li-Ming
    Yan, Xu
    Lu, Bao-Liang
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 863 - 870