Enhancing cross-subject emotion recognition precision through unimodal EEG: a novel emotion preceptor model

被引:0
|
作者
Dong, Yihang [1 ,2 ]
Jing, Changhong [1 ]
Mahmud, Mufti [3 ]
Ng, Michael Kwok-Po [4 ]
Wang, Shuqiang [1 ,2 ]
机构
[1] Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
[2] University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
[3] Information and Computer Science Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
[4] Department of Mathematics, Hong Kong Baptist University, Hong Kong
关键词
Spatio-temporal data;
D O I
10.1186/s40708-024-00245-8
中图分类号
学科分类号
摘要
Affective computing is a key research area in computer science, neuroscience, and psychology, aimed at enabling computers to recognize, understand, and respond to human emotional states. As the demand for affective computing technology grows, emotion recognition methods based on physiological signals have become research hotspots. Among these, electroencephalogram (EEG) signals, which reflect brain activity, are highly promising. However, due to individual physiological and anatomical differences, EEG signals introduce noise, reducing emotion recognition performance. Additionally, the synchronous collection of multimodal data in practical applications requires high equipment and environmental standards, limiting the practical use of EEG signals. To address these issues, this study proposes the Emotion Preceptor, a cross-subject emotion recognition model based on unimodal EEG signals. This model introduces a Static Spatial Adapter to integrate spatial information in EEG signals, reducing individual differences and extracting robust encoding information. The Temporal Causal Network then leverages temporal information to extract beneficial features for emotion recognition, achieving precise recognition based on unimodal EEG signals. Extensive experiments on the SEED and SEED-V datasets demonstrate the superior performance of the Emotion Preceptor and validate the effectiveness of the new data processing method that combines DE features in a temporal sequence. Additionally, we analyzed the model’s data flow and encoding methods from a biological interpretability perspective and validated it with neuroscience research related to emotion generation and regulation, promoting further development in emotion recognition research based on EEG signals.
引用
收藏
相关论文
共 50 条
  • [1] Exploring EEG Features in Cross-Subject Emotion Recognition
    Li, Xiang
    Song, Dawei
    Zhang, Peng
    Zhang, Yazhou
    Hou, Yuexian
    Hu, Bin
    FRONTIERS IN NEUROSCIENCE, 2018, 12
  • [2] FMLAN: A novel framework for cross-subject and cross-session EEG emotion recognition
    Yu, Peng
    He, Xiaopeng
    Li, Haoyu
    Dou, Haowen
    Tan, Yeyu
    Wu, Hao
    Chen, Badong
    Biomedical Signal Processing and Control, 2025, 100
  • [3] Multisource Transfer Learning for Cross-Subject EEG Emotion Recognition
    Li, Jinpeng
    Qiu, Shuang
    Shen, Yuan-Yuan
    Liu, Cheng-Lin
    He, Huiguang
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (07) : 3281 - 3293
  • [4] A Novel Experiment Setting for Cross-subject Emotion Recognition
    Hu, Hao-Yi
    Zhao, Li-Ming
    Liu, Yu-Zhong
    Li, Hua-Liang
    Lu, Bao-Liang
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 6416 - 6419
  • [5] Enhancing cross-subject EEG emotion recognition through multi-source manifold metric transfer learning
    Shi X.
    She Q.
    Fang F.
    Meng M.
    Tan T.
    Zhang Y.
    Computers in Biology and Medicine, 2024, 174
  • [6] Hybrid transfer learning strategy for cross-subject EEG emotion recognition
    Lu, Wei
    Liu, Haiyan
    Ma, Hua
    Tan, Tien-Ping
    Xia, Lingnan
    FRONTIERS IN HUMAN NEUROSCIENCE, 2023, 17
  • [7] Cross-Subject Emotion Recognition Using Fused Entropy Features of EEG
    Zuo, Xin
    Zhang, Chi
    Hamalainen, Timo
    Gao, Hanbing
    Fu, Yu
    Cong, Fengyu
    ENTROPY, 2022, 24 (09)
  • [8] Joint EEG Feature Transfer and Semisupervised Cross-Subject Emotion Recognition
    Peng, Yong
    Liu, Honggang
    Kong, Wanzeng
    Nie, Feiping
    Lu, Bao-Liang
    Cichocki, Andrzej
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (07) : 8104 - 8115
  • [9] Contrastive Learning of Subject-Invariant EEG Representations for Cross-Subject Emotion Recognition
    Shen, Xinke
    Liu, Xianggen
    Hu, Xin
    Zhang, Dan
    Song, Sen
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2023, 14 (03) : 2496 - 2511
  • [10] Cross-Subject EEG-Based Emotion Recognition Through Neural Networks With Stratified Normalization
    Fdez, Javier
    Guttenberg, Nicholas
    Witkowski, Olaf
    Pasquali, Antoine
    FRONTIERS IN NEUROSCIENCE, 2021, 15