A Finite Element Variational Multiscale Method for Stationary Incompressible Magnetohydrodynamics Equations

被引:0
|
作者
Huang, Huayi [1 ]
Huang, Yunqing [1 ]
Tang, Qili [1 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Key Lab Intelligent Comp & Informat Proc,Minist Ed, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Variational multiscale method; stationary incompressible magnetohydrodynamics; large-scale spaces; stability and convergence; high Reynolds numbers; ITERATIVE METHODS; CONVERGENCE; FORMULATION; FLOWS;
D O I
10.4208/aamm.OA-2022-0200xxx2023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a variational multiscale method (VMM) for the stationary incompressible magnetohydrodynamics equations. This method is defined by large-scale spaces for the velocity field and the magnetic field, which aims to solve flows at high Reynolds numbers. We provide a new VMM formulation and prove its stability and convergence. Finally, some numerical experiments are presented to indicate the optimal convergence of our method.
引用
收藏
页数:24
相关论文
共 50 条
  • [42] AN A POSTERIORI ERROR ANALYSIS FOR THE EQUATIONS OF STATIONARY INCOMPRESSIBLE MAGNETOHYDRODYNAMICS
    Chaudhry, Jehanzeb H.
    Rappaport, Ari E.
    Shadid, John N.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (02): : B354 - B380
  • [43] A Multiscale Finite Element Formulation for the Incompressible Navier-Stokes Equations
    Baptista, Riedson
    Bento, Sergio S.
    Santos, Isaac P.
    Lima, Leonardo M.
    Valli, Andrea M. P.
    Catabriga, Lucia
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS (ICCSA 2018), PT II, 2018, 10961 : 253 - 267
  • [44] A generalized parametric iterative finite element method for the 2D/3D stationary incompressible magnetohydrodynamics
    Yin, Lina
    Huang, Yunqing
    Tang, Qili
    [J]. APPLIED NUMERICAL MATHEMATICS, 2023, 193 : 242 - 261
  • [45] Moving mesh method with variational multiscale finite element method for convection-diffusion-reaction equations
    Zhang, Xiaohua
    Xu, Xinmeng
    [J]. ENGINEERING WITH COMPUTERS, 2024, 40 (03) : 1943 - 1965
  • [46] Mixed Finite Element Methods for Incompressible Flow: Stationary Stokes Equations
    Cai, Zhiqiang
    Tong, Charles
    Vassilevski, Panayot S.
    Wang, Chunbo
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2010, 26 (04) : 957 - 978
  • [47] Analysis of a semi-implicit structure-preserving finite element method for the nonstationary incompressible Magnetohydrodynamics equations
    Qiu, Weifeng
    Shi, Ke
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (10) : 2150 - 2161
  • [48] CONVERGENT FINITE ELEMENT DISCRETIZATION OF THE MULTI-FLUID NONSTATIONARY INCOMPRESSIBLE MAGNETOHYDRODYNAMICS EQUATIONS
    Banas, Lubomir
    Prohl, Andreas
    [J]. MATHEMATICS OF COMPUTATION, 2010, 79 (272) : 1957 - 1999
  • [49] Galerkin-Petrov least squares mixed element method for stationary incompressible magnetohydrodynamics
    Zhen-dong Luo
    Yun-kui Mao
    Jiang Zhu
    [J]. Applied Mathematics and Mechanics, 2007, 28 : 395 - 404
  • [50] A stabilized finite element method for generalized stationary incompressible flows
    Codina, R
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 190 (20-21) : 2681 - 2706