AN A POSTERIORI ERROR ANALYSIS FOR THE EQUATIONS OF STATIONARY INCOMPRESSIBLE MAGNETOHYDRODYNAMICS

被引:0
|
作者
Chaudhry, Jehanzeb H. [1 ]
Rappaport, Ari E. [1 ,2 ]
Shadid, John N. [1 ,2 ]
机构
[1] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA
[2] Sandia Natl Labs, Ctr Comp Res, POB 5800, Albuquerque, NM 87185 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2021年 / 43卷 / 02期
基金
美国国家科学基金会;
关键词
adjoint-based error estimation; magnetohydrodynamics; finite elements; SYSTEM LEAST-SQUARES; ELLIPTIC PROBLEMS; FORMULATION; QUANTIFICATION; APPROXIMATION; DIVERGENCE; REFINEMENT; ADAPTIVITY; DOMAINS;
D O I
10.1137/20M1342975
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Resistive magnetohydrodynamics (MHD) is a continuum base-level model for conducting fluids (e.g., plasmas and liquid metals) subject to external magnetic fields. The efficient and robust solution of the MHD system poses many challenges due to the strongly nonlinear, non-self-adjoint, and highly coupled nature of the physics. In this article, we develop a robust and accurate a posteriori error estimate for the numerical solution of the resistive MHD equations based on the exact penalty method. The error estimate also isolates particular contributions to the error in a quantity of interest (QoI) to inform discretization choices to arrive at accurate solutions. The tools required for these estimates involve duality arguments and computable residuals.
引用
收藏
页码:B354 / B380
页数:27
相关论文
共 50 条