A Finite Element Variational Multiscale Method for Stationary Incompressible Magnetohydrodynamics Equations

被引:0
|
作者
Huang, Huayi [1 ]
Huang, Yunqing [1 ]
Tang, Qili [1 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Key Lab Intelligent Comp & Informat Proc,Minist Ed, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Variational multiscale method; stationary incompressible magnetohydrodynamics; large-scale spaces; stability and convergence; high Reynolds numbers; ITERATIVE METHODS; CONVERGENCE; FORMULATION; FLOWS;
D O I
10.4208/aamm.OA-2022-0200xxx2023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a variational multiscale method (VMM) for the stationary incompressible magnetohydrodynamics equations. This method is defined by large-scale spaces for the velocity field and the magnetic field, which aims to solve flows at high Reynolds numbers. We provide a new VMM formulation and prove its stability and convergence. Finally, some numerical experiments are presented to indicate the optimal convergence of our method.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] A parallel finite element method for incompressible magnetohydrodynamics equations
    Dong, Xiaojing
    He, Yinnian
    [J]. APPLIED MATHEMATICS LETTERS, 2020, 102
  • [2] A new class of finite element variational multiscale turbulence models for incompressible magnetohydrodynamics
    Sondak, D.
    Shadid, J. N.
    Oberai, A. A.
    Pawlowski, R. P.
    Cyr, E. C.
    Smith, T. M.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 295 : 596 - 616
  • [3] Streamline Diffusion Finite Element Method for Stationary Incompressible Magnetohydrodynamics
    Zhang, Guo-Dong
    He, Yinnian
    Zhang, Yan
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2014, 30 (06) : 1877 - 1901
  • [4] A finite element variational multiscale method for incompressible flow
    Jiang, Yu
    Mei, Liquan
    Wei, Huiming
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 266 : 374 - 384
  • [5] Iterative finite element variational multiscale method for the incompressible Navier-Stokes equations
    Zhang, Yamiao
    Zhang, Jiazhong
    Zhu, Lianning
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 340 : 53 - 70
  • [6] A decoupling penalty finite element method for the stationary incompressible MagnetoHydroDynamics equation
    Deng, Jien
    Si, Zhiyong
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 128 : 601 - 612
  • [7] Defect correction finite element method for the stationary incompressible Magnetohydrodynamics equation
    Si, Zhiyong
    Jing, Shujie
    Wang, Yunxia
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2016, 285 : 184 - 194
  • [8] The Oseen Type Finite Element Iterative Method for the Stationary Incompressible Magnetohydrodynamics
    Dong, Xiaojing
    He, Yinnian
    [J]. ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2017, 9 (04) : 775 - 794
  • [9] ON THE EXISTENCE, UNIQUENESS, AND FINITE-ELEMENT APPROXIMATION OF SOLUTIONS OF THE EQUATIONS OF STATIONARY, INCOMPRESSIBLE MAGNETOHYDRODYNAMICS
    GUNZBURGER, MD
    MEIR, AJ
    PETERSON, JS
    [J]. MATHEMATICS OF COMPUTATION, 1991, 56 (194) : 523 - 563
  • [10] Local and parallel finite element algorithm for stationary incompressible magnetohydrodynamics
    Zhang, Yuhong
    Hou, Yanren
    Shan, Li
    Dong, Xiaojing
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (05) : 1513 - 1539