Estimation and inference for partial linear regression surfaces using monotone warped-plane splines

被引:1
|
作者
Meyer, Mary C. [1 ]
Liao, Xiyue [2 ]
机构
[1] Colorado State Univ, Stat, Ft Collins, CO 80523 USA
[2] Colorado State Univ, Stat, Long Beach, CA USA
关键词
Partial linear model; isotonic; constrained estimation; cone projection; hypothesis test; penalised splines; ISOTONIC REGRESSION; ALGORITHM; SHAPE; CONVERGENCE; RATES;
D O I
10.1080/10485252.2021.2014834
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Methods are proposed for spline estimation of monotone regression surfaces, without additivity assumptions and allowing for linear covariate effects. The surfaces are estimated by a continuous piece-wise warped-plane spline with linear inequality constraints. Surface and covariate effects are estimated simultaneously with cone projection, leading to useful inference methods. For surfaces in two predictors, a cube-root convergence rate is attained, and conditions for square-root convergence of the linear terms are derived. Point-wise confidence intervals for the surfaces incorporate mixtures of covariance matrices, with the mixing parameters estimation by simulations. The methods are implemented in the R package cgam.
引用
下载
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [31] Semiparametric Estimation Methods for Panel Count Data Using Monotone B-Splines
    Lu, Minggen
    Zhang, Ying
    Huang, Jian
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (487) : 1060 - 1070
  • [32] Estimation and inference in partially functional linear regression with multiple functional covariates
    Xu, Wenchao
    Ding, Hui
    Zhang, Riquan
    Liang, Hua
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2020, 209 : 44 - 61
  • [33] Estimation and inference for covariate adjusted partially functional linear regression models
    Jiang, Zhiqiang
    Huang, Zhensheng
    Zhu, Hanbing
    STATISTICS AND ITS INTERFACE, 2021, 14 (04) : 359 - 371
  • [34] Polynomial spline estimation for partial functional linear regression models
    Zhou, Jianjun
    Chen, Zhao
    Peng, Qingyan
    COMPUTATIONAL STATISTICS, 2016, 31 (03) : 1107 - 1129
  • [35] Composite expectile estimation in partial functional linear regression model
    Yu, Ping
    Song, Xinyuan
    Du, Jiang
    JOURNAL OF MULTIVARIATE ANALYSIS, 2024, 203
  • [36] Polynomial spline estimation for partial functional linear regression models
    Jianjun Zhou
    Zhao Chen
    Qingyan Peng
    Computational Statistics, 2016, 31 : 1107 - 1129
  • [37] Statistical inference on restricted linear regression models with partial distortion measurement errors
    Wei, Zhenghong
    Fan, Yongbin
    Zhang, Jun
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2016, 30 (03) : 464 - 484
  • [38] Generalized empirical likelihood inference in partial linear regression model for longitudinal data
    Tian, Ruiqin
    Xue, Liugen
    STATISTICS, 2017, 51 (05) : 988 - 1005
  • [39] Estimation of Hardness and Residual Stress on End-Milled Surfaces Using Linear Regression Model
    Fujii, Hideyuki
    Takahashi, Yukio
    Hodohara, Jiei
    Suzuki, Norikazu
    Yamada, Yuki
    Imabeppu, Yasuhiro
    Irino, Naruhiro
    INTERNATIONAL JOURNAL OF AUTOMATION TECHNOLOGY, 2023, 17 (06) : 564 - 574
  • [40] Variable selection in partial linear regression using the least angle regression
    Seo, Han Son
    Yoon, Min
    Lee, Hakbae
    KOREAN JOURNAL OF APPLIED STATISTICS, 2021, 34 (06) : 937 - 944