Variable selection in partial linear regression using the least angle regression

被引:0
|
作者
Seo, Han Son [1 ]
Yoon, Min [2 ]
Lee, Hakbae [3 ]
机构
[1] Konkuk Univ, Dept Appl Stat, Seoul, South Korea
[2] Pukyong Natl Univ, Dept Appl Math, 45 Yongso Ro, Busan 48513, South Korea
[3] Yonsei Univ, Dept Appl Stat, Seoul, South Korea
关键词
least angle regression; partial linear models; sequential selection; variable selection;
D O I
10.5351/KJAS.2021.34.6.937
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The problem of selecting variables is addressed in partial linear regression. Model selection for partial linear models is not easy since it involves nonparametric estimation such as smoothing parameter selection and estimation for linear explanatory variables. In this work, several approaches for variable selection are proposed using a fast forward selection algorithm, least angle regression (LARS). The proposed procedures use t-test, all possible regressions comparisons or stepwise selection process with variables selected by LARS. An example based on real data and a simulation study on the performance of the suggested procedures are presented.
引用
收藏
页码:937 / 944
页数:8
相关论文
共 50 条
  • [1] Robust variable selection using least angle regression and elemental set sampling
    McCann, Lauren
    Welsch, Roy E.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 52 (01) : 249 - 257
  • [2] Outlier Detection and Robust Variable Selection for Least Angle Regression
    Shahriari, Shirin
    Faria, Susana
    Manuela Goncalves, A.
    Van Aelst, Stefan
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2014, PT III, 2014, 8581 : 512 - +
  • [3] Comparison of variable selection methods in partial least squares regression
    Mehmood, Tahir
    Saebo, Solve
    Liland, Kristian Hovde
    [J]. JOURNAL OF CHEMOMETRICS, 2020, 34 (06)
  • [4] A review of variable selection methods in Partial Least Squares Regression
    Mehmood, Tahir
    Liland, Kristian Hovde
    Snipen, Lars
    Saebo, Solve
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2012, 118 : 62 - 69
  • [5] Robust linear model selection based on least angle regression
    Khan, Jafar A.
    Van Aelst, Stefan
    Zamar, Ruben H.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (480) : 1289 - 1299
  • [6] Estimation and variable selection for partial functional linear regression
    Tang, Qingguo
    Jin, Peng
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2019, 103 (04) : 475 - 501
  • [7] Variable selection in partial linear regression with functional covariate
    Aneiros, G.
    Ferraty, F.
    Vieu, P.
    [J]. STATISTICS, 2015, 49 (06) : 1322 - 1347
  • [8] Estimation and variable selection for partial functional linear regression
    Qingguo Tang
    Peng Jin
    [J]. AStA Advances in Statistical Analysis, 2019, 103 : 475 - 501
  • [9] Least angle regression for model selection
    Zhang, Hongyang
    Zamar, Ruben H.
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2014, 6 (02): : 116 - 123
  • [10] Multiple testing and variable selection along the path of the least angle regression
    Azais, Jean-Marc
    De Castro, Yohann
    [J]. INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2022, 11 (04) : 1329 - 1388