Robust methods in Mendelian randomization via penalization of heterogeneous causal estimates

被引:84
|
作者
Rees, Jessica M. B. [1 ,2 ]
Wood, Angela M. [1 ]
Dudbridge, Frank [3 ]
Burgess, Stephen [1 ,4 ]
机构
[1] Univ Cambridge, Dept Publ Hlth & Primary Care, Cardiovasc Epidemiol Unit, Cambridge CB1 8RN, England
[2] Univ Edinburgh, Usher Inst Populat Hlth Sci & Informat, Edinburgh Clin Trials Unit, Edinburgh EH16 4UX, Midlothian, Scotland
[3] Univ Leicester, Dept Hlth Sci, Leicester LE1 7RH, Leics, England
[4] Univ Cambridge, MRC Biostat Unit, Cambridge CB2 0SR, England
来源
PLOS ONE | 2019年 / 14卷 / 09期
基金
英国惠康基金;
关键词
BODY-MASS INDEX; INSTRUMENTAL VARIABLES; CHOLESTEROL; INDIVIDUALS; INSIGHTS; ALLELE; RISK;
D O I
10.1371/journal.pone.0222362
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Methods have been developed for Mendelian randomization that can obtain consistent causal estimates under weaker assumptions than the standard instrumental variable assumptions. The median-based estimator and MR-Egger are examples of such methods. However, these methods can be sensitive to genetic variants with heterogeneous causal estimates. Such heterogeneity may arise from over-dispersion in the causal estimates, or specific variants with outlying causal estimates. In this paper, we develop three extensions to robust methods for Mendelian randomization with summarized data: 1) robust regression (MM-estimation); 2) penalized weights; and 3) Lasso penalization. Methods using these approaches are considered in two applied examples: one where there is evidence of over-dispersion in the causal estimates (the causal effect of body mass index on schizophrenia risk), and the other containing outliers (the causal effect of low-density lipoprotein cholesterol on Alzheimer's disease risk). Through an extensive simulation study, we demonstrate that robust regression applied to the inverse-variance weighted method with penalized weights is a worthwhile additional sensitivity analysis for Mendelian randomization to provide robustness to variants with outlying causal estimates. The results from the applied examples and simulation study highlight the importance of using methods that make different assumptions to assess the robustness of findings from Mendelian randomization investigations with multiple genetic variants.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] A LATENT MIXTURE MODEL FOR HETEROGENEOUS CAUSAL MECHANISMS IN MENDELIAN RANDOMIZATION
    Long, Daniel
    Zho, Qingyuan
    Chen, Yang
    [J]. ANNALS OF APPLIED STATISTICS, 2024, 18 (02): : 966 - 990
  • [2] Pleiotropy robust methods for multivariable Mendelian randomization
    Grant, Andrew J.
    Burgess, Stephen
    [J]. STATISTICS IN MEDICINE, 2021, 40 (26) : 5813 - 5830
  • [3] Mendelian randomization with a binary exposure variable: interpretation and presentation of causal estimates
    Stephen Burgess
    Jeremy A. Labrecque
    [J]. European Journal of Epidemiology, 2018, 33 : 947 - 952
  • [4] Mendelian randomization with a binary exposure variable: interpretation and presentation of causal estimates
    Burgess, Stephen
    Labrecque, Jeremy A.
    [J]. EUROPEAN JOURNAL OF EPIDEMIOLOGY, 2018, 33 (10) : 947 - 952
  • [5] Bias in causal estimates from Mendelian randomization studies with weak instruments
    Burgess, Stephen
    Thompson, Simon G.
    [J]. STATISTICS IN MEDICINE, 2011, 30 (11) : 1312 - 1323
  • [6] Mendelian Randomization: Methods for using Genetic Variants in Causal Estimation
    Little, Mark
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2018, 181 (02) : 549 - 550
  • [7] Mendelian Randomization: Methods for Causal Inference Using Genetic Variants
    Richmond, Rebecca C.
    Sanderson, Eleanor
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2022, 51 (06) : 2031 - 2034
  • [8] Genetic Obesity and the Risk of Atrial Fibrillation - Causal Estimates From Mendelian Randomization
    Chatterjee, Neal A.
    Giulianini, Franco
    Geelhoed, Bastiaan
    Lunetta, Kathryn L.
    Misialek, Jeffrey R.
    Niemeijer, Maartje N.
    Rienstra, Michiel
    Rose, Lynda
    Smith, Albert V.
    Arking, Dan E.
    Ellinor, Patrick T.
    Heeringa, Jan
    Lin, Honghuang
    Lubitz, Steven A.
    Soliman, Elsayed Z.
    Verweij, Nik
    Alonso, Alvaro
    Benjamin, Emelia J.
    Gudnason, Vilmundur
    Stricker, Bruno H.
    Van der Harst, Pim
    Chasman, Daniel I.
    Albert, Christine M.
    [J]. CIRCULATION, 2016, 134
  • [9] Genetic Obesity and the Risk of Atrial Fibrillation Causal Estimates from Mendelian Randomization
    Chatterjee, Neal A.
    Giulianini, Franco
    Geelhoed, Bastiaan
    Lunetta, Kathryn L.
    Misialek, Jeffrey R.
    Niemeijer, Maartje N.
    Rienstra, Michiel
    Rose, Lynda M.
    Smith, Albert V.
    Arking, Dan E.
    Ellinor, Patrick T.
    Heeringa, Jan
    Lin, Honghuang
    Lubitz, Steven A.
    Soliman, Elsayed Z.
    Verweij, Niek
    Alonso, Alvaro
    Benjamin, Emelia J.
    Gudnason, Vilmundur
    Stricker, Bruno H. C.
    Van Der Harst, Pim
    Chasman, Daniel I.
    Albert, Christine M.
    [J]. CIRCULATION, 2017, 135 (08) : 741 - +
  • [10] A comparison of robust Mendelian randomization methods using summary data
    Slob, Eric A. W.
    Burgess, Stephen
    [J]. GENETIC EPIDEMIOLOGY, 2020, 44 (04) : 313 - 329