Robust methods in Mendelian randomization via penalization of heterogeneous causal estimates

被引:84
|
作者
Rees, Jessica M. B. [1 ,2 ]
Wood, Angela M. [1 ]
Dudbridge, Frank [3 ]
Burgess, Stephen [1 ,4 ]
机构
[1] Univ Cambridge, Dept Publ Hlth & Primary Care, Cardiovasc Epidemiol Unit, Cambridge CB1 8RN, England
[2] Univ Edinburgh, Usher Inst Populat Hlth Sci & Informat, Edinburgh Clin Trials Unit, Edinburgh EH16 4UX, Midlothian, Scotland
[3] Univ Leicester, Dept Hlth Sci, Leicester LE1 7RH, Leics, England
[4] Univ Cambridge, MRC Biostat Unit, Cambridge CB2 0SR, England
来源
PLOS ONE | 2019年 / 14卷 / 09期
基金
英国惠康基金;
关键词
BODY-MASS INDEX; INSTRUMENTAL VARIABLES; CHOLESTEROL; INDIVIDUALS; INSIGHTS; ALLELE; RISK;
D O I
10.1371/journal.pone.0222362
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Methods have been developed for Mendelian randomization that can obtain consistent causal estimates under weaker assumptions than the standard instrumental variable assumptions. The median-based estimator and MR-Egger are examples of such methods. However, these methods can be sensitive to genetic variants with heterogeneous causal estimates. Such heterogeneity may arise from over-dispersion in the causal estimates, or specific variants with outlying causal estimates. In this paper, we develop three extensions to robust methods for Mendelian randomization with summarized data: 1) robust regression (MM-estimation); 2) penalized weights; and 3) Lasso penalization. Methods using these approaches are considered in two applied examples: one where there is evidence of over-dispersion in the causal estimates (the causal effect of body mass index on schizophrenia risk), and the other containing outliers (the causal effect of low-density lipoprotein cholesterol on Alzheimer's disease risk). Through an extensive simulation study, we demonstrate that robust regression applied to the inverse-variance weighted method with penalized weights is a worthwhile additional sensitivity analysis for Mendelian randomization to provide robustness to variants with outlying causal estimates. The results from the applied examples and simulation study highlight the importance of using methods that make different assumptions to assess the robustness of findings from Mendelian randomization investigations with multiple genetic variants.
引用
收藏
页数:24
相关论文
共 50 条
  • [11] Investigating the causal relationship between neuroticism and depression via Mendelian randomization
    Speed, D.
    Hemani, G.
    Speed, M. S.
    Borglum, A. D.
    Ostergaard, S. D.
    [J]. ACTA PSYCHIATRICA SCANDINAVICA, 2019, 139 (04) : 395 - 397
  • [12] Commentary: Mendelian Randomization for Causal Inference
    Moodie, Erica E. M.
    le Cessie, Saskia
    [J]. JOURNAL OF INFECTIOUS DISEASES, 2024,
  • [13] MR-Clust: clustering of genetic variants in Mendelian randomization with similar causal estimates
    Foley, Christopher N.
    Mason, Amy M.
    Kirk, Paul D. W.
    Burgess, Stephen
    [J]. BIOINFORMATICS, 2021, 37 (04) : 531 - 541
  • [14] Metalloproteins as risk factors for osteoarthritis: improving and understanding causal estimates using Mendelian randomization
    Li, Jiaze
    Guan, Mingyang
    Qi, Lin
    Zhang, Fengping
    Jia, Chenxu
    Meng, Qingtao
    Han, Jian
    [J]. CLINICAL RHEUMATOLOGY, 2024, 43 (06) : 2079 - 2091
  • [15] Mendelian randomization analysis using mixture models for robust and efficient estimation of causal effects
    Qi, Guanghao
    Chatterjee, Nilanjan
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [16] Mendelian randomization analysis using mixture models for robust and efficient estimation of causal effects
    Guanghao Qi
    Nilanjan Chatterjee
    [J]. Nature Communications, 10
  • [17] Brain imaging traits and epilepsy: Unraveling causal links via mendelian randomization
    Li, Fangyan
    Tang, Maowen
    Hao, Cheng
    Yang, Menghua
    Pan, Yue
    Lei, Pinggui
    [J]. BRAIN AND BEHAVIOR, 2024, 14 (10):
  • [18] Pleiotropy-robust Mendelian randomization
    van Kippersluis, Hans
    Rietveld, Cornelius A.
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2018, 47 (04) : 1279 - 1288
  • [19] Sensitivity Analyses for Robust Causal Inference from Mendelian Randomization Analyses with Multiple Genetic Variants
    Burgess, Stephen
    Bowden, Jack
    Fall, Tove
    Ingelsson, Erik
    Thompson, Simon G.
    [J]. EPIDEMIOLOGY, 2017, 28 (01) : 30 - 42
  • [20] Mendelian randomization mixed-scale treatment effect robust identification and estimation for causal inference
    Liu, Zhonghua
    Ye, Ting
    Sun, Baoluo
    Schooling, Mary
    Tchetgen, Eric Tchetgen
    [J]. BIOMETRICS, 2023, 79 (03) : 2208 - 2219