Mendelian randomization with a binary exposure variable: interpretation and presentation of causal estimates

被引:0
|
作者
Stephen Burgess
Jeremy A. Labrecque
机构
[1] University of Cambridge,MRC Biostatistics Unit, Cambridge Institute of Public Health
[2] University of Cambridge,Department of Public Health and Primary Care
[3] Erasmus MC,Department of Epidemiology
来源
关键词
Mendelian randomization; Genetic epidemiology; Causal inference; Instrumental variable; Effect estimation;
D O I
暂无
中图分类号
学科分类号
摘要
Mendelian randomization uses genetic variants to make causal inferences about a modifiable exposure. Subject to a genetic variant satisfying the instrumental variable assumptions, an association between the variant and outcome implies a causal effect of the exposure on the outcome. Complications arise with a binary exposure that is a dichotomization of a continuous risk factor (for example, hypertension is a dichotomization of blood pressure). This can lead to violation of the exclusion restriction assumption: the genetic variant can influence the outcome via the continuous risk factor even if the binary exposure does not change. Provided the instrumental variable assumptions are satisfied for the underlying continuous risk factor, causal inferences for the binary exposure are valid for the continuous risk factor. Causal estimates for the binary exposure assume the causal effect is a stepwise function at the point of dichotomization. Even then, estimation requires further parametric assumptions. Under monotonicity, the causal estimate represents the average causal effect in ‘compliers’, individuals for whom the binary exposure would be present if they have the genetic variant and absent otherwise. Unlike in randomized trials, genetic compliers are unlikely to be a large or representative subgroup of the population. Under homogeneity, the causal effect of the exposure on the outcome is assumed constant in all individuals; rarely a plausible assumption. We here provide methods for causal estimation with a binary exposure (although subject to all the above caveats). Mendelian randomization investigations with a dichotomized binary exposure should be conceptualized in terms of an underlying continuous variable.
引用
收藏
页码:947 / 952
页数:5
相关论文
共 50 条
  • [1] Mendelian randomization with a binary exposure variable: interpretation and presentation of causal estimates
    Burgess, Stephen
    Labrecque, Jeremy A.
    [J]. EUROPEAN JOURNAL OF EPIDEMIOLOGY, 2018, 33 (10) : 947 - 952
  • [2] Mendelian randomization as an instrumental variable approach to causal inference
    Didelez, Vanessa
    Sheehan, Nuala
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2007, 16 (04) : 309 - 330
  • [3] Robust methods in Mendelian randomization via penalization of heterogeneous causal estimates
    Rees, Jessica M. B.
    Wood, Angela M.
    Dudbridge, Frank
    Burgess, Stephen
    [J]. PLOS ONE, 2019, 14 (09):
  • [4] Bias in causal estimates from Mendelian randomization studies with weak instruments
    Burgess, Stephen
    Thompson, Simon G.
    [J]. STATISTICS IN MEDICINE, 2011, 30 (11) : 1312 - 1323
  • [5] Genetic Obesity and the Risk of Atrial Fibrillation - Causal Estimates From Mendelian Randomization
    Chatterjee, Neal A.
    Giulianini, Franco
    Geelhoed, Bastiaan
    Lunetta, Kathryn L.
    Misialek, Jeffrey R.
    Niemeijer, Maartje N.
    Rienstra, Michiel
    Rose, Lynda
    Smith, Albert V.
    Arking, Dan E.
    Ellinor, Patrick T.
    Heeringa, Jan
    Lin, Honghuang
    Lubitz, Steven A.
    Soliman, Elsayed Z.
    Verweij, Nik
    Alonso, Alvaro
    Benjamin, Emelia J.
    Gudnason, Vilmundur
    Stricker, Bruno H.
    Van der Harst, Pim
    Chasman, Daniel I.
    Albert, Christine M.
    [J]. CIRCULATION, 2016, 134
  • [6] Genetic Obesity and the Risk of Atrial Fibrillation Causal Estimates from Mendelian Randomization
    Chatterjee, Neal A.
    Giulianini, Franco
    Geelhoed, Bastiaan
    Lunetta, Kathryn L.
    Misialek, Jeffrey R.
    Niemeijer, Maartje N.
    Rienstra, Michiel
    Rose, Lynda M.
    Smith, Albert V.
    Arking, Dan E.
    Ellinor, Patrick T.
    Heeringa, Jan
    Lin, Honghuang
    Lubitz, Steven A.
    Soliman, Elsayed Z.
    Verweij, Niek
    Alonso, Alvaro
    Benjamin, Emelia J.
    Gudnason, Vilmundur
    Stricker, Bruno H. C.
    Van Der Harst, Pim
    Chasman, Daniel I.
    Albert, Christine M.
    [J]. CIRCULATION, 2017, 135 (08) : 741 - +
  • [7] Instrumental Variable Estimation of Causal Risk Ratios and Causal Odds Ratios in Mendelian Randomization Analyses
    Palmer, Tom M.
    Sterne, Jonathan A. C.
    Harbord, Roger M.
    Lawlor, Debbie A.
    Sheehan, Nuala A.
    Meng, Sha
    Granell, Raquel
    Smith, George Davey
    Didelez, Vanessa
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2011, 173 (12) : 1392 - 1403
  • [8] Interpretation of Mendelian Randomization Studies and the Search for Causal Pathways in Atherothrombosis: The Need for Caution
    Ridker, Paul M.
    Paynter, Nina P.
    Danik, Jacqueline S.
    Glynn, Robert J.
    [J]. METABOLIC SYNDROME AND RELATED DISORDERS, 2010, 8 (06) : 465 - 469
  • [9] Commentary: Mendelian Randomization for Causal Inference
    Moodie, Erica E. M.
    le Cessie, Saskia
    [J]. JOURNAL OF INFECTIOUS DISEASES, 2024,
  • [10] Interpretation and Potential Biases of Mendelian Randomization Estimates With Time-Varying Exposures
    Labrecque, Jeremy A.
    Swanson, Sonja A.
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2019, 188 (01) : 231 - 238