Fast lithium storage in defect-rich carbon encapsulated Fe3C nanoparticles as anode material toward high-energy lithium-ion capacitors

被引:6
|
作者
Li, Jun [1 ]
Jin, Xin [1 ]
Hu, Yu-Xia [2 ]
Lu, Chun [1 ]
Zhang, Yu-Shan [1 ]
Zhang, Bin-Mei [1 ]
Kong, Ling-Bin [1 ,3 ]
Liu, Mao-Cheng [1 ,3 ]
机构
[1] Lanzhou Univ Technol, Sch Mat Sci, Engn, Lanzhou, Peoples R China
[2] Lanzhou City Univ, Sch Bailie Engn &Technol, Lanzhou, Peoples R China
[3] Lanzhou Univ Technol, State Key Lab Adv Proc, Recycling Nonferrous Metals, Lanzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Fe3C; Defect-rich carbon; Kinetic analysis; Lithium ions; Hybrid capacitors; IRON-OXIDE; PERFORMANCE; GRAPHENE; CATHODE; SHELL; NANOCOMPOSITES; CONSTRUCTION; NANOFIBERS; ELECTRODE; COMPOSITE;
D O I
10.1007/s11581-019-03187-y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium-ion capacitors (LICs) can combine the high energy density of battery-type electrode and high power density of capacitor-type electrode, which is considered as one of the most promising electrochemical storage devices. The challenge of developing superior performance LICs is designing suitable electrode materials to overcome the kinetic imbalance between the battery-type anode and the capacitor-type cathode. Herein, defect-rich carbon encapsulated Fe3C nanoparticle (Fe3C@DRC) was obtained via a modified sol-gel method with a calcination process. The defect-rich and microporous structure effectively boosts kinetics and provides additional reaction sites for lithium-ion intercalation/deintercalation process, which leads to an excellent capacity (215 mAh g(-1) at 1 A g(-1) after 800 cycles) and rate capability (128.8 mAh g(-1) even at 10 A g(-1)). Then a novel Fe3C@DRC//AC LIC was consisted using Fe3C@DRC as anode and activated carbon as cathode. The Fe3C@DRC//AC LIC demonstrates a wide potential window (0-4 V), delivers a high energy density of 187.8 Wh kg(-1) at a power density of 200 W kg(-1), reached a high power density of 4000 W kg(-1) at an energy density of 80 Wh kg(-1), and coupled with a reasonable life span (84.8% after 6000 cycles at a current density of 1 A g(-1)). The study indicates that the introduction of defect-rich strategy may push the practical application of high-rate and high-energy LIC anode materials in energy fields.
引用
收藏
页码:23 / 31
页数:9
相关论文
共 50 条
  • [31] Synthesis and Electrochemical Properties of Fe3C-carbon Composite as an Anode Material for Lithium-ion Batteries
    Kitajou, Ayuko
    Kudo, Shinji
    Hayashi, Jun-ichiro
    Okada, Shigeto
    ELECTROCHEMISTRY, 2017, 85 (10) : 630 - 633
  • [32] Hierarchical porous activated carbon anode for dual carbon lithium-ion capacitors: Energy storage mechanisms and electrochemical performances
    Abdelaal, Mohamed M.
    Hsu, Hao-Huan
    Liao, Wan-Ling
    Mohamed, Saad Gomaa
    Yang, Chun-Chen
    Hung, Tai-Feng
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2024, 154
  • [33] Encapsulated Fe3O4 into tubular mesoporous carbon as a superior performance anode material for lithium-ion batteries
    Cao, Zhijie
    Ma, Xiaobo
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 815
  • [34] Fe3O4 nanoparticles embedded in carbon-framework as anode material for high performance lithium-ion batteries
    Yu, Yang
    Zhu, Yongchun
    Gong, Huaxu
    Ma, Yanmei
    Zhang, Xing
    Li, Na
    Qian, Yitai
    ELECTROCHIMICA ACTA, 2012, 83 : 53 - 58
  • [35] Foam carbon loading Fe3O4 nanoparticles for superior lithium-ion batteries anode material
    Sun, Kailian
    Zhao, Hongbin
    Yao, Jian
    Zhang, Shouquan
    Xu, Jiaxiang
    IONICS, 2015, 21 (07) : 1901 - 1908
  • [36] Foam carbon loading Fe3O4 nanoparticles for superior lithium-ion batteries anode material
    Kailian Sun
    Hongbin Zhao
    Jian Yao
    Shouquan Zhang
    Jiaxiang Xu
    Ionics, 2015, 21 : 1901 - 1908
  • [37] Upgraded lithium storage performance of defect-rich Si@C anode assisted by Fe2O3-induced pseudocapacitance
    Yao, Yunfei
    He, Zhiying
    Xu, Xiangyang
    Tong, Yuanlin
    Chen, Dongsheng
    Huang, Chenyu
    Zhao, Hongye
    ELECTROCHIMICA ACTA, 2023, 455
  • [38] Coprecipitation Prepared High-Performance Anode Material KMnF3 for Lithium-Ion Capacitors
    Li, Zhe
    He, Zheng-Hua
    Hou, Jing-Feng
    Gao, Jian-Fei
    Kong, Ling-Bin
    ENERGY TECHNOLOGY, 2023, 11 (11)
  • [39] Spinel/Layered Heterostructured Lithium-Rich Oxide Nanowires as Cathode Material for High-Energy Lithium-Ion Batteries
    Yu, Ruizhi
    Zhang, Xiaohui
    Liu, Tao
    Yang, Li
    Liu, Lei
    Wang, Yu
    Wang, Xianyou
    Shu, Hongbo
    Yang, Xiukang
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (47) : 41210 - 41223
  • [40] Hollow Porous α-Fe2O3 Nanoparticles as Anode Materials for High-Performance Lithium-Ion Capacitors
    Tan, Jia-Yu
    Su, Jing-Ting
    Wu, Yen-Ju
    Huang, Chun-Lung
    Cheng, Po-Yin
    Chen, Yu-An
    Lu, Shih-Yuan
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (03): : 1180 - 1192