Orbital stability of the sum of N peakons for the generalized higher-order Camassa-Holm equation

被引:2
|
作者
Deng, Tongjie [1 ]
Chen, Aiyong [2 ]
机构
[1] Hunan Normal Univ, Sch Math & Stat, Key Lab Comp & Stochast Math, Minist Educ, Changsha 410081, Hunan, Peoples R China
[2] Hunan First Normal Univ, Dept Math, Changsha 410205, Hunan, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Generalized higher-order Camassa-Holm equation; Peakons; Multi-peakons; Orbital stability; SHALLOW-WATER EQUATION; BREAKING; WAVES;
D O I
10.1007/s00033-022-01796-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The orbital stability of peakons for the generalized higher-order Camassa-Holm equation has been established by Qin et al. (Z Angew Math Phys 73:96, 2022. https://doi.org/10.1007/s00033-022-01739-3) . In this paper, using energy argument and combining the method of the orbital stability of a single peakon with monotonicity of the local energy norm, we prove that the sum of N sufficiently decoupled peakons is orbitally stable in the energy space.
引用
收藏
页数:28
相关论文
共 50 条
  • [41] A NOTE ON THE CAUCHY PROBLEM FOR A HIGHER-ORDER μ-CAMASSA-HOLM EQUATION
    Deng, Xijun
    Chen, Aiyong
    Zhu, Kaixuan
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2021, 83 (03): : 107 - 110
  • [42] A note on the cauchy problem for a higher-order µ-camassa-holm equation
    Deng, Xijun
    Chen, Aiyong
    Zhu, Kaixuan
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2021, 83 (03): : 107 - 110
  • [44] Higher-order shallow water equations and the Camassa-Holm equation
    Parker, David F.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2007, 7 (03): : 629 - 641
  • [45] Stability of peakons of the Camassa-Holm equation beyond wave breaking
    Gao, Yu
    Liu, Hao
    Wong, Tak Kwong
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (12)
  • [46] Peakons and periodic cusp wave solutions in a generalized Camassa-Holm equation
    Zhang, Lijun
    Chen, Li-Qun
    Huo, Xuwen
    CHAOS SOLITONS & FRACTALS, 2006, 30 (05) : 1238 - 1249
  • [47] Peakons of a generalized Camassa-Holm equation with bifurcation theory of dynamical system
    Sun, Min
    Li, Jing
    Quan, TingTing
    ADVANCED RESEARCH ON APPLIED MECHANICS AND MANUFACTURING SYSTEM, 2013, 252 : 36 - 39
  • [48] The orbital stability of the solitary wave solutions of the generalized Camassa-Holm equation
    Liu, Xiaohua
    Zhang, Weiguo
    Li, Zhengming
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 398 (02) : 776 - 784
  • [49] Orbital Stability of Peakons and Multi-peakons for a Generalized Cubic–Quintic Camassa–Holm Type Equation
    Tongjie Deng
    Aiyong Chen
    Journal of Nonlinear Mathematical Physics, 2023, 30 : 493 - 530
  • [50] Solitons and peakons of a nonautonomous Camassa-Holm equation
    Huang, Yunzhe
    Yu, Xin
    APPLIED MATHEMATICS LETTERS, 2019, 98 : 385 - 391