Orbital stability of the sum of N peakons for the generalized higher-order Camassa-Holm equation

被引:2
|
作者
Deng, Tongjie [1 ]
Chen, Aiyong [2 ]
机构
[1] Hunan Normal Univ, Sch Math & Stat, Key Lab Comp & Stochast Math, Minist Educ, Changsha 410081, Hunan, Peoples R China
[2] Hunan First Normal Univ, Dept Math, Changsha 410205, Hunan, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Generalized higher-order Camassa-Holm equation; Peakons; Multi-peakons; Orbital stability; SHALLOW-WATER EQUATION; BREAKING; WAVES;
D O I
10.1007/s00033-022-01796-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The orbital stability of peakons for the generalized higher-order Camassa-Holm equation has been established by Qin et al. (Z Angew Math Phys 73:96, 2022. https://doi.org/10.1007/s00033-022-01739-3) . In this paper, using energy argument and combining the method of the orbital stability of a single peakon with monotonicity of the local energy norm, we prove that the sum of N sufficiently decoupled peakons is orbitally stable in the energy space.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] Stability of periodic peakons for the modified μ-Camassa-Holm equation
    Liu, Yue
    Qu, Changzheng
    Zhang, Ying
    PHYSICA D-NONLINEAR PHENOMENA, 2013, 250 : 66 - 74
  • [32] ON THE CAUCHY PROBLEM FOR A HIGHER-ORDER μ-CAMASSA-HOLM EQUATION
    Wang, Feng
    Li, Fengquan
    Qiao, Zhijun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (08) : 4163 - 4187
  • [33] Stability of peakons and periodic peakons for a nonlinear quartic Camassa-Holm equation
    Chen, Aiyong
    Deng, Tongjie
    Qiao, Zhijun
    MONATSHEFTE FUR MATHEMATIK, 2022, 198 (02): : 251 - 288
  • [34] Stability of peakons and periodic peakons for a nonlinear quartic Camassa-Holm equation
    Aiyong Chen
    Tongjie Deng
    Zhijun Qiao
    Monatshefte für Mathematik, 2022, 198 : 251 - 288
  • [35] Orbital Stability of Peakons for the Modified Camassa—Holm Equation
    Ji Li
    Acta Mathematica Sinica, English Series, 2022, 38 : 148 - 160
  • [36] Stability of periodic peakons for a generalized-μ Camassa-Holm equation with quartic nonlinearities
    Li, Zhigang
    APPLICABLE ANALYSIS, 2022, : 4638 - 4651
  • [37] ON AN N-COMPONENT CAMASSA-HOLM EQUATION WITH PEAKONS
    Mi, Yongsheng
    Guo, Boling
    Mu, Chunlai
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (03) : 1575 - 1601
  • [38] Continuity for a generalized cross-coupled Camassa-Holm system with waltzing peakons and higher-order nonlinearities
    Zhou, Shouming
    Qiao, Zhijun
    Mu, Chunlai
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2020, 51
  • [39] Peakons and periodic cusp waves in a generalized Camassa-Holm equation
    Qian, TF
    Tang, MY
    CHAOS SOLITONS & FRACTALS, 2001, 12 (07) : 1347 - 1360
  • [40] Orbital Stability of Peakons for the Modified Camassa–Holm Equation
    Ji LI
    Acta Mathematica Sinica,English Series, 2022, (01) : 148 - 160