Thermodynamics at zero temperature: Inequalities for the ground state of a quantum many-body system

被引:0
|
作者
Il'in, N. [1 ]
Shpagina, E. [2 ,3 ]
Lychkovskiy, O. [1 ,4 ,5 ]
机构
[1] Skolkovo Inst Sci & Technol, Bolshoy Blvd 30, Moscow 121205, Russia
[2] NRU Higher Sch Econ, Fac Phys, Myasnitskaya 20, Moscow 101000, Russia
[3] Russian Acad Sci, Inst Solid State Phys, Chernogolovka 142432, Russia
[4] Russian Acad Sci, Dept Math Methods Quantum Technol, Steklov Math Inst, Gubkina Str 8, Moscow 119991, Russia
[5] Moscow Inst Phys & Technol, Lab Phys Complex Quantum Syst, Inst Sky Per 9, Dolgoprudnyi 141700, Moscow Region, Russia
基金
俄罗斯基础研究基金会;
关键词
Thermodynamic inequalities; Ground state; Anderson bound; Quantum impurity; Polaron; Bipolaron; LONG-RANGE ORDER; ONE-DIMENSION; STABILITY;
D O I
10.1016/j.physleta.2021.127637
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove that for a single-component many-body system at zero temperature the inequality E-int <= PV holds, where E-int is the interaction energy, P is pressure and V is volume. This inequality is proven under rather general assumptions with the use of Anderson-type bound relating ground state energies of systems with different numbers of particles. We also consider adding impurity particles to the system and derive inequalities on the chemical potential of the impurity and binding energy of the bound state of two impurities. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Efficient tomography of a quantum many-body system
    B. P. Lanyon
    C. Maier
    M. Holzäpfel
    T. Baumgratz
    C. Hempel
    P. Jurcevic
    I. Dhand
    A. S. Buyskikh
    A. J. Daley
    M. Cramer
    M. B. Plenio
    R. Blatt
    C. F. Roos
    Nature Physics, 2017, 13 : 1158 - 1162
  • [32] Subdynamics in a many-body system of quantum particles
    Los, Victor F.
    PHYSICAL REVIEW E, 2024, 110 (06)
  • [33] Eigenstate Localization in a Many-Body Quantum System
    Yin, Chao
    Nandkishore, Rahul
    Lucas, Andrew
    PHYSICAL REVIEW LETTERS, 2024, 133 (13)
  • [34] Efficient tomography of a quantum many-body system
    Lanyon, B. P.
    Maier, C.
    Holzaepfel, M.
    Baumgratz, T.
    Hempel, C.
    Jurcevic, P.
    Dhand, I.
    Buyskikh, A. S.
    Daley, A. J.
    Cramer, M.
    Plenio, M. B.
    Blatt, R.
    Roos, C. F.
    NATURE PHYSICS, 2017, 13 (12) : 1158 - +
  • [35] Free fall of a quantum many-body system
    Colcelli, A.
    Mussardo, G.
    Sierra, G.
    Trombettoni, A.
    AMERICAN JOURNAL OF PHYSICS, 2022, 90 (11) : 833 - 840
  • [36] Recurrences in an isolated quantum many-body system
    Rauer, Bernhard
    Erne, Sebastian
    Schweigler, Thomas
    Cataldini, Federica
    Tajik, Mohammadamin
    Schmiedmayer, Jorg
    SCIENCE, 2018, 360 (6386) : 307 - +
  • [37] On parametric resonance in quantum many-body system
    Tsue, Y
    da Providência, J
    Kuriyama, A
    Yamamura, M
    PROGRESS OF THEORETICAL PHYSICS, 2006, 115 (01): : 129 - 141
  • [38] Subdynamics in a many-body system of quantum particles
    Los, Victor F.
    Physical Review E, 110 (06):
  • [39] Quantum Phases of Time Order in Many-Body Ground States
    Guo, Tie-Cheng
    You, Li
    FRONTIERS IN PHYSICS, 2022, 10
  • [40] Quantum state complexity meets many-body scars
    Nandy, Sourav
    Mukherjee, Bhaskar
    Bhattacharyya, Arpan
    Banerjee, Aritra
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2024, 36 (15)