Efficient tomography of a quantum many-body system

被引:4
|
作者
Lanyon, B. P. [1 ,2 ]
Maier, C. [1 ,2 ]
Holzaepfel, M. [3 ,4 ]
Baumgratz, T. [3 ,4 ,5 ,6 ]
Hempel, C. [2 ,7 ]
Jurcevic, P. [1 ,2 ]
Dhand, I. [3 ,4 ]
Buyskikh, A. S. [8 ,9 ]
Daley, A. J. [8 ,9 ]
Cramer, M. [3 ,4 ,10 ]
Plenio, M. B. [3 ,4 ]
Blatt, R. [1 ,2 ]
Roos, C. F. [1 ,2 ]
机构
[1] Austrian Acad Sci, Inst Quantenopt & Quanteninformat, Technikerstr 21A, A-6020 Innsbruck, Austria
[2] Univ Innsbruck, Inst Expt Phys, Technikerstr 25, A-6020 Innsbruck, Austria
[3] Univ Ulm, Inst Theoret Phys, Albert Einstein Allee 11, D-89069 Ulm, Germany
[4] Univ Ulm, IQST, Albert Einstein Allee 11, D-89069 Ulm, Germany
[5] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England
[6] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[7] Univ Sydney, Sch Phys, ARC Ctr Engn Quantum Syst, Sydney, NSW 2006, Australia
[8] Univ Strathclyde, Dept Phys, Glasgow G4 0NG, Lanark, Scotland
[9] Univ Strathclyde, SUPA, Glasgow G4 0NG, Lanark, Scotland
[10] Leibniz Univ Hannover, Inst Theoret Phys, D-30167 Hannover, Germany
基金
英国工程与自然科学研究理事会; 奥地利科学基金会;
关键词
EXPONENTIAL DECAY; AREA LAW; ENTANGLEMENT; STATES; PROPAGATION;
D O I
10.1038/NPHYS4244
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum state tomography is the standard technique for estimating the quantum state of small systems(1). But its application to larger systems soon becomes impractical as the required resources scale exponentially with the size. Therefore, considerable effort is dedicated to the development of new characterization tools for quantum many-body states(2-11). Here we demonstrate matrix product state tomography(2), which is theoretically proven to allow for the efficient and accurate estimation of a broad class of quantum states. We use this technique to reconstruct the dynamical state of a trapped-ion quantum simulator comprising up to 14 entangled and individually controlled spins: a size far beyond the practical limits of quantum state tomography. Our results reveal the dynamical growth of entanglement and describe its complexity as correlations spread out during a quench: a necessary condition for future demonstrations of better-than-classical performance. Matrix product state tomography should therefore find widespread use in the study of large quantum many-body systems and the benchmarking and verification of quantum simulators and computers.
引用
收藏
页码:1158 / +
页数:8
相关论文
共 50 条
  • [1] Efficient tomography of a quantum many-body system
    B. P. Lanyon
    C. Maier
    M. Holzäpfel
    T. Baumgratz
    C. Hempel
    P. Jurcevic
    I. Dhand
    A. S. Buyskikh
    A. J. Daley
    M. Cramer
    M. B. Plenio
    R. Blatt
    C. F. Roos
    [J]. Nature Physics, 2017, 13 : 1158 - 1162
  • [2] Efficient and feasible state tomography of quantum many-body systems
    Ohliger, M.
    Nesme, V.
    Eisert, J.
    [J]. NEW JOURNAL OF PHYSICS, 2013, 15
  • [3] Pairwise tomography networks for many-body quantum systems
    Garcia-Perez, Guillermo
    Rossi, Matteo A. C.
    Sokolov, Boris
    Borrelli, Elsi-Mari
    Maniscalco, Sabrina
    [J]. PHYSICAL REVIEW RESEARCH, 2020, 2 (02):
  • [4] Understanding quantum work in a quantum many-body system
    Wang, Qian
    Quan, H. T.
    [J]. PHYSICAL REVIEW E, 2017, 95 (03)
  • [5] Eigenstate Localization in a Many-Body Quantum System
    Yin, Chao
    Nandkishore, Rahul
    Lucas, Andrew
    [J]. PHYSICAL REVIEW LETTERS, 2024, 133 (13)
  • [6] Free fall of a quantum many-body system
    Colcelli, A.
    Mussardo, G.
    Sierra, G.
    Trombettoni, A.
    [J]. AMERICAN JOURNAL OF PHYSICS, 2022, 90 (11) : 833 - 840
  • [7] On parametric resonance in quantum many-body system
    Tsue, Y
    da Providência, J
    Kuriyama, A
    Yamamura, M
    [J]. PROGRESS OF THEORETICAL PHYSICS, 2006, 115 (01): : 129 - 141
  • [8] Subdynamics in a many-body system of quantum particles
    Los, Victor F.
    [J]. Physical Review E, 110 (06):
  • [9] Recurrences in an isolated quantum many-body system
    Rauer, Bernhard
    Erne, Sebastian
    Schweigler, Thomas
    Cataldini, Federica
    Tajik, Mohammadamin
    Schmiedmayer, Jorg
    [J]. SCIENCE, 2018, 360 (6386) : 307 - +
  • [10] Hamiltonian tomography for quantum many-body systems with arbitrary couplings
    Wang, Sheng-Tao
    Deng, Dong-Ling
    Duan, L-M
    [J]. NEW JOURNAL OF PHYSICS, 2015, 17