Efficient tomography of a quantum many-body system

被引:4
|
作者
Lanyon, B. P. [1 ,2 ]
Maier, C. [1 ,2 ]
Holzaepfel, M. [3 ,4 ]
Baumgratz, T. [3 ,4 ,5 ,6 ]
Hempel, C. [2 ,7 ]
Jurcevic, P. [1 ,2 ]
Dhand, I. [3 ,4 ]
Buyskikh, A. S. [8 ,9 ]
Daley, A. J. [8 ,9 ]
Cramer, M. [3 ,4 ,10 ]
Plenio, M. B. [3 ,4 ]
Blatt, R. [1 ,2 ]
Roos, C. F. [1 ,2 ]
机构
[1] Austrian Acad Sci, Inst Quantenopt & Quanteninformat, Technikerstr 21A, A-6020 Innsbruck, Austria
[2] Univ Innsbruck, Inst Expt Phys, Technikerstr 25, A-6020 Innsbruck, Austria
[3] Univ Ulm, Inst Theoret Phys, Albert Einstein Allee 11, D-89069 Ulm, Germany
[4] Univ Ulm, IQST, Albert Einstein Allee 11, D-89069 Ulm, Germany
[5] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England
[6] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[7] Univ Sydney, Sch Phys, ARC Ctr Engn Quantum Syst, Sydney, NSW 2006, Australia
[8] Univ Strathclyde, Dept Phys, Glasgow G4 0NG, Lanark, Scotland
[9] Univ Strathclyde, SUPA, Glasgow G4 0NG, Lanark, Scotland
[10] Leibniz Univ Hannover, Inst Theoret Phys, D-30167 Hannover, Germany
基金
奥地利科学基金会; 英国工程与自然科学研究理事会;
关键词
EXPONENTIAL DECAY; AREA LAW; ENTANGLEMENT; STATES; PROPAGATION;
D O I
10.1038/NPHYS4244
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum state tomography is the standard technique for estimating the quantum state of small systems(1). But its application to larger systems soon becomes impractical as the required resources scale exponentially with the size. Therefore, considerable effort is dedicated to the development of new characterization tools for quantum many-body states(2-11). Here we demonstrate matrix product state tomography(2), which is theoretically proven to allow for the efficient and accurate estimation of a broad class of quantum states. We use this technique to reconstruct the dynamical state of a trapped-ion quantum simulator comprising up to 14 entangled and individually controlled spins: a size far beyond the practical limits of quantum state tomography. Our results reveal the dynamical growth of entanglement and describe its complexity as correlations spread out during a quench: a necessary condition for future demonstrations of better-than-classical performance. Matrix product state tomography should therefore find widespread use in the study of large quantum many-body systems and the benchmarking and verification of quantum simulators and computers.
引用
收藏
页码:1158 / +
页数:8
相关论文
共 50 条
  • [31] Constant-time quantum search with a many-body quantum system
    Dalfavero, Benjamin
    Meill, Alexander
    Meyer, David A.
    Wong, Thomas G.
    Wrubel, Jonathan P.
    [J]. Physical Review A, 2024, 110 (05)
  • [32] Quantum many-body scars and quantum criticality
    Yao, Zhiyuan
    Pan, Lei
    Liu, Shang
    Zhai, Hui
    [J]. PHYSICAL REVIEW B, 2022, 105 (12)
  • [33] How many particles make up a chaotic many-body quantum system?
    Zisling, Guy
    Santos, Lea F.
    Bar Lev, Yevgeny
    [J]. SCIPOST PHYSICS, 2021, 10 (04):
  • [34] Efficient representation of quantum many-body states with deep neural networks
    Xun Gao
    Lu-Ming Duan
    [J]. Nature Communications, 8
  • [35] Efficient representation of quantum many-body states with deep neural networks
    Gao, Xun
    Duan, Lu-Ming
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [36] A quantum solution for efficient use of symmetries in the simulation of many-body systems
    Schmitz, Albert T.
    Johri, Sonika
    [J]. NPJ QUANTUM INFORMATION, 2020, 6 (01)
  • [37] Efficient simulation of one-dimensional quantum many-body systems
    Vidal, G
    [J]. PHYSICAL REVIEW LETTERS, 2004, 93 (04) : 040502 - 1
  • [38] A quantum solution for efficient use of symmetries in the simulation of many-body systems
    Albert T. Schmitz
    Sonika Johri
    [J]. npj Quantum Information, 6
  • [39] Quasiparticle engineering and entanglement propagation in a quantum many-body system
    P. Jurcevic
    B. P. Lanyon
    P. Hauke
    C. Hempel
    P. Zoller
    R. Blatt
    C. F. Roos
    [J]. Nature, 2014, 511 : 202 - 205
  • [40] Tower of quantum scars in a partially many-body localized system
    Department of Physics and Astronomy, Aarhus University, Aarhus C
    DK-8000, Denmark
    [J]. arXiv, 1600,