Using a hybrid approach to optimize experimental network design for aquifer parameter identification

被引:2
|
作者
Chang, Liang-Cheng [2 ]
Chu, Hone-Jay [1 ]
Lin, Yu-Pin [1 ]
Chen, Yu-Wen [2 ]
机构
[1] Natl Taiwan Univ, Dept Bioenvironm Syst Engn, Taipei 10764, Taiwan
[2] Natl Chiao Tung Univ, Dept Civil Engn, Hsinchu, Taiwan
关键词
Groundwater; Experimental design; Genetic algorithm; GROUNDWATER HYDROLOGY; GENETIC ALGORITHMS; INVERSE PROBLEM; TABU SEARCH; MANAGEMENT; MODELS; SYSTEM;
D O I
10.1007/s10661-009-1157-5
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This research develops an optimum design model of groundwater network using genetic algorithm (GA) and modified Newton approach, based on the experimental design conception. The goal of experiment design is to minimize parameter uncertainty, represented by the covariance matrix determinant of estimated parameters. The design problem is constrained by a specified cost and solved by GA and a parameter identification model. The latter estimates optimum parameter value and its associated sensitivity matrices. The general problem is simplified into two classes of network design problems: an observation network design problem and a pumping network design problem. Results explore the relationship between the experimental design and the physical processes. The proposed model provides an alternative to solve optimization problems for groundwater experimental design.
引用
收藏
页码:133 / 142
页数:10
相关论文
共 50 条
  • [1] Using a hybrid approach to optimize experimental network design for aquifer parameter identification
    Liang-Cheng Chang
    Hone-Jay Chu
    Yu-Pin Lin
    Yu-Wen Chen
    [J]. Environmental Monitoring and Assessment, 2010, 169 : 133 - 142
  • [2] Parameter identification, experimental design and model falsification for biological network models using semidefinite programming
    Hasenauer, J.
    Waldherr, S.
    Wagner, K.
    Allgoewer, F.
    [J]. IET SYSTEMS BIOLOGY, 2010, 4 (02) : 119 - 130
  • [3] Towards experimental design using a Bayesian framework for parameter identification in dynamic intracellular network models
    Kramer, Andrei
    Radde, Nicole
    [J]. ICCS 2010 - INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, PROCEEDINGS, 2010, 1 (01): : 1639 - 1647
  • [4] Dynamic Parameter Identification of Serial Robots Using a Hybrid Approach
    Huang, Yanjiang
    Ke, Jianhong
    Zhang, Xianmin
    Ota, Jun
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2023, 39 (02) : 1607 - 1621
  • [5] Aquifer parameter identification using the extended Kalman filter
    Leng, CH
    Yeh, HD
    [J]. WATER RESOURCES RESEARCH, 2003, 39 (03)
  • [6] Optimum experimental design of a monitoring network for parameter identification at riverbank well fields
    Wang, Ping
    Pozdniakov, Sergey P.
    Shestakov, Vsevolod M.
    [J]. JOURNAL OF HYDROLOGY, 2015, 523 : 531 - 541
  • [7] Speaker identification using a hybrid neural network and conformity approach
    Ouzounov, A
    [J]. SIGNAL ANALYSIS & PREDICTION I, 1997, : 455 - 458
  • [8] Network topology and parameter estimation: from experimental design methods to gene regulatory network kinetics using a community based approach
    Meyer, Pablo
    Cokelaer, Thomas
    Chandran, Deepak
    Kim, Kyung Hyuk
    Loh, Po-Ru
    Tucker, George
    Lipson, Mark
    Berger, Bonnie
    Kreutz, Clemens
    Raue, Andreas
    Steiert, Bernhard
    Timmer, Jens
    Bilal, Erhan
    Sauro, Herbert M.
    Stolovitzky, Gustavo
    Saez-Rodriguez, Julio
    [J]. BMC SYSTEMS BIOLOGY, 2014, 8
  • [9] Parameter identification of an unconfined aquifer using extended Kalman filter
    Yeh, HD
    Leng, CH
    [J]. DEVELOPMENT AND APPLICATION OF COMPUTER TECHNIQUES TO ENVIRONMENTAL STUDIES, 2002, 9 : 425 - 432
  • [10] 2D ARMA parameter identification using a hybrid lattice design
    Sari, NY
    Kayran, AH
    [J]. 2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 109 - 112