An Improved Centroid-based Approach for Multi-label Classification of Web Pages by Genre

被引:0
|
作者
Jebari, Chaker [1 ]
机构
[1] Coll Appl Sci, Ibri, Oman
关键词
multi-label classification; incremental classification; genre centroid; centroid adjustement; noise web page;
D O I
10.1109/ICTAI.2011.142
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose an improved multi-label approach to classify web pages by genre. Our approach provides a multi-label classification scheme in which a web page can be assigned to more than one genre. To deal with the rapid evolution of web genres, our approach implements an incremental centroid-based classification scheme. Conducted experiments on a multi-labeled corpus of web pages show that our approach provides good results.
引用
收藏
页码:889 / 890
页数:2
相关论文
共 50 条
  • [31] A Turkish Topic Modeling Dataset For Multi-label Classification of Movie Genre
    Jabrayilzade, Elgun
    Arslan, Algin Poyraz
    Para, Hasan
    Polatbilek, Ozan
    Sezerer, Erhan
    Tekir, Selma
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [32] Video Representation Fusion Network For Multi-Label Movie Genre Classification
    Bi, Tianyu
    Jarnikov, Dmitri
    Lukkien, Johan
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 9386 - 9391
  • [33] An improved multi-label lazy learning approach
    School of Computer Science and Engineering, Southeast University, Nanjing 210096, China
    Jisuanji Yanjiu yu Fazhan, 2012, 11 (2271-2282):
  • [34] Multi-Label Emotion Classification of Online Learners' Reviews Using Machine Learning Text-Based Multi-Label Classification Approach
    Makhoukhi, Hajar
    Roubi, Sarra
    2024 5TH INTERNATIONAL CONFERENCE ON EDUCATION DEVELOPMENT AND STUDIES, ICEDS 2024, 2024, : 59 - 64
  • [35] Improved trilateration for indoor localization: Neural network and centroid-based approach
    Jondhale, Satish R.
    Jondhale, Amruta S.
    Deshpande, Pallavi S.
    Lloret, Jaime
    INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2021, 17 (11):
  • [36] Improved Conditional Dependency Networks for Multi-label Classification
    Guo Tao
    Li Guiyang
    2015 SEVENTH INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION (ICMTMA 2015), 2015, : 561 - 565
  • [37] An ensemble-based approach for multi-view multi-label classification
    Gibaja E.L.
    Moyano J.M.
    Ventura S.
    Ventura, Sebastián (sventura@uco.es), 2016, Springer Verlag (05) : 251 - 259
  • [38] An Improved Multi-label Classification Ensemble Learning Algorithm
    Fu, Zhongliang
    Wang, Lili
    Zhang, Danpu
    PATTERN RECOGNITION (CCPR 2014), PT I, 2014, 483 : 243 - 252
  • [39] A Simple Approach to Incorporate Label Dependency in Multi-label Classification
    Cherman, Everton Alvares
    Metz, Jean
    Monard, Maria Carolina
    ADVANCES IN SOFT COMPUTING - MICAI 2010, PT II, 2010, 6438 : 33 - 43
  • [40] A multi-label classification approach based on ontology and structure weight strategy
    Yang, F. (yangfq147@nenu.edu.cn), 1600, ICIC Express Letters Office, Tokai University, Kumamoto Campus, 9-1-1, Toroku, Kumamoto, 862-8652, Japan (07):