Machine Learning Reimagined: The Promise of Interpretability to Combat Bias

被引:2
|
作者
Maurer, Lydia R. [1 ]
Bertsimas, Dimitris [2 ,3 ]
Kaafarani, Haytham M. A. [4 ]
机构
[1] Massachusetts Gen Hosp, Dept Surg, Boston, MA 02114 USA
[2] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] Interpretable AI, Boston, MA USA
[4] Massachusetts Gen Hosp, Div Trauma Emergency Surg & Surg Crit Care, Boston, MA 02114 USA
关键词
HEALTH;
D O I
10.1097/SLA.0000000000005396
中图分类号
R61 [外科手术学];
学科分类号
摘要
[No abstract available]
引用
收藏
页码:E738 / E739
页数:2
相关论文
共 50 条
  • [1] Against Interpretability: a Critical Examination of the Interpretability Problem in Machine Learning
    Krishnan M.
    Philosophy & Technology, 2020, 33 (3) : 487 - 502
  • [2] A Study on Interpretability of Decision of Machine Learning
    Shirataki, Shohei
    Yamaguchi, Saneyasu
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 4830 - 4831
  • [3] A Review of Framework for Machine Learning Interpretability
    Araujo, Ivo de Abreu
    Torres, Renato Hidaka
    Sampaio Neto, Nelson Cruz
    AUGMENTED COGNITION, AC 2022, 2022, 13310 : 261 - 272
  • [4] Interpretability in HealthCare: A Comparative Study of Local Machine Learning Interpretability Techniques
    El Shawi, Radwa
    Sherif, Youssef
    Al-Mallah, Mouaz
    Sakr, Sherif
    2019 IEEE 32ND INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2019, : 275 - 280
  • [5] Interpretability in healthcare: A comparative study of local machine learning interpretability techniques
    ElShawi, Radwa
    Sherif, Youssef
    Al-Mallah, Mouaz
    Sakr, Sherif
    COMPUTATIONAL INTELLIGENCE, 2021, 37 (04) : 1633 - 1650
  • [6] Interpretability and Reproducability in Production Machine Learning Applications
    Ghanta, Sindhu
    Subramanian, Sriram
    Sundararaman, Swaminathan
    Khermosh, Lior
    Sridhar, Vinay
    Arteaga, Dulcardo
    Luo, Qianmei
    Das, Dhananjoy
    Talagala, Nisha
    2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2018, : 658 - 664
  • [7] Evaluating Attribution Methods in Machine Learning Interpretability
    Ratul, Qudrat E. Alahy
    Serra, Edoardo
    Cuzzocrea, Alfredo
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 5239 - 5245
  • [8] Machine learning interpretability meets TLS fingerprinting
    Mahdi Jafari Siavoshani
    Amirhossein Khajehpour
    Amirmohammad Ziaei Bideh
    Amirali Gatmiri
    Ali Taheri
    Soft Computing, 2023, 27 : 7191 - 7208
  • [9] A Framework for Interpretability in Machine Learning for Medical Imaging
    Wang, Alan Q.
    Karaman, Batuhan K.
    Kim, Heejong
    Rosenthal, Jacob
    Saluja, Rachit
    Young, Sean I.
    Sabuncu, Mert R.
    IEEE ACCESS, 2024, 12 : 53277 - 53292
  • [10] StrategyAtlas: Strategy Analysis for Machine Learning Interpretability
    Collaris, Dennis
    van Wijk, Jarke J.
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2023, 29 (06) : 2996 - 3008