Measurement procedures for characterization of wind turbine wakes with scanning Doppler wind LiDARs

被引:22
|
作者
Iungo, G. V. [1 ]
Porte-Agel, F. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Wind Engn & Renewable Energy Lab WIRE, CH-1015 Lausanne, Switzerland
关键词
D O I
10.5194/asr-10-71-2013
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The wake flow produced from an Enercon E-70 wind turbine is investigated through three scanning Doppler wind LiDARs. One LiDAR is deployed upwind to characterize the incoming wind, while the other two LiDARs are located downstream to carry out wake measurements. The main challenge in performing measurements of wind turbine wakes is represented by the varying wind conditions, and by the consequent adjustments of the turbine yaw angle needed to maximize power production. Consequently, taking into account possible variations of the relative position between the LiDAR measurement volume and wake location, different measuring techniques were carried out in order to perform 2-D and 3-D characterizations of the mean wake velocity field. However, larger measurement volumes and higher spatial resolution require longer sampling periods; thus, to investigate wake turbulence tests were also performed by staring the LiDAR laser beam over fixed directions and with the maximum sampling frequency. The characterization of the wake recovery along the downwind direction is performed. Moreover, wake turbulence peaks are detected at turbine top-tip height, which can represent increased fatigue loads for downstream wind turbines within a wind farm.
引用
收藏
页码:71 / 75
页数:5
相关论文
共 50 条
  • [21] Stability of Floating Wind Turbine Wakes
    Kleine, V. G.
    Franceschini, L.
    Carmo, B. S.
    Hanifi, A.
    Henningson, D. S.
    WAKE CONFERENCE 2021, 2021, 1934
  • [22] Numerical computations of wind turbine wakes
    Ivanell, Stefan
    Sorensen, Jens N.
    Henningson, Dan
    WIND ENERGY, 2007, : 259 - +
  • [23] Towards multi of wind turbine wakes
    Pawar, Suraj
    Sharma, Ashesh
    Vijayakumar, Ganesh
    Bay, Chrstopher J.
    Yellapantula, Shashank
    San, Omer
    RENEWABLE ENERGY, 2022, 200 : 867 - 879
  • [24] Meteorological Controls on Wind Turbine Wakes
    Barthelmie, Rebecca J.
    Hansen, Kurt S.
    Pryor, Sara C.
    PROCEEDINGS OF THE IEEE, 2013, 101 (04) : 1010 - 1019
  • [25] Wind turbine wakes over hills
    ShaMsoddin, Sina
    Porte-Agel, Fernando
    JOURNAL OF FLUID MECHANICS, 2018, 855 : 671 - 702
  • [26] Spectral coherence in wind turbine wakes
    Hojstrup, J
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 1999, 80 (1-2) : 137 - 146
  • [27] Anisotropy of turbulence in wind turbine wakes
    Gómez-Elvira, R
    Crespo, A
    Migoya, E
    Manuel, F
    Hernández, J
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2005, 93 (10) : 797 - 814
  • [28] A Review on the Meandering of Wind Turbine Wakes
    Yang, Xiaolei
    Sotiropoulos, Fotis
    ENERGIES, 2019, 12 (24)
  • [29] Terrain effects on characteristics of surface wind and wind turbine wakes
    Tian, Wei
    Ozbay, Ahmet
    Hu, Hui
    FRONTIERS IN FLUID MECHANICS RESEARCH, 2015, 126 : 542 - 548
  • [30] Effects of yaw on the wakes evolution of a wind turbine in wind tunnel
    Zhang, Lidong
    Tie, Hao
    Zhao, Yuze
    Liu, Huiwen
    Tian, Wenxin
    Zhao, Xiuyong
    Chang, Zihan
    Li, Qinwei
    RENEWABLE ENERGY, 2025, 245