Wind turbine wakes over hills

被引:39
|
作者
ShaMsoddin, Sina [1 ]
Porte-Agel, Fernando [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Wind Engn & Renewable Energy Lab WIRE, EPFL ENAC IIE WIRE, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
turbulent boundary layers; turbulent flows; wakes; LARGE-EDDY SIMULATION; BOUNDARY-LAYER FLOW; FINITE-DIFFERENCE MODEL; SUBGRID-SCALE MODELS; TURBULENT-FLOW; COMPLEX TERRAIN; CURVED HILL; AIR-FLOW; PERFORMANCE; CURVATURE;
D O I
10.1017/jfm.2018.653
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Understanding and predicting the behaviour of wind turbine wake flows over hills is important for optimal design of wind-farm configurations on topography. In this study, we present an analytical modelling framework together with large-eddy simulation (LES) results to investigate turbine wakes over two-dimensional hills. The analytical model consists of two steps. In the first step, we deal with the effect of the pressure gradient on the wake evolution; and in the second step, we consider the effect of the hill-induced streamline distortion on the wake. This model enables us to obtain the wake recovery rate, the mean velocity and velocity deficit profiles and the wake trajectory in the presence of the hill. Moreover, we perform LES to test our model and also to obtain new complementary insight about such flows. Especially, we take advantage of the LES data to perform a special analysis of the behaviour of the wake on the leeward side of the hill. It is found that the mainly favourable pressure gradient on the windward side of the hill accelerates the wake recovery and the adverse pressure gradient on the leeward side decelerates it. The wake trajectory for a hill of the same height as the turbine's hub height is found to closely follow the hill profile on the windward side, but it maintains an almost constant elevation (a horizontal line) downstream of the hilltop. The trajectory of the wake on the leeward side is also studied for a limiting case of an escarpment, and it is shown that an internal boundary layer forms on the plateau which leads to an upward displacement of the wake centre. Finally, a parametric study of the position of the turbine with respect to the hill is performed to further elucidate the effect of the hill-induced pressure gradient on the wind turbine wake recovery.
引用
收藏
页码:671 / 702
页数:32
相关论文
共 50 条
  • [1] Large-eddy simulation of wind-turbine wakes over two-dimensional hills
    Zhang, Ziyu
    Huang, Peng
    Bitsuamlak, Girma
    Cao, Shuyang
    PHYSICS OF FLUIDS, 2022, 34 (06)
  • [2] Wind turbine wakes for wind energy
    Larsen, Gunner C.
    Crespo, Antonio
    WIND ENERGY, 2011, 14 (07) : 797 - 798
  • [3] Coalescing Wind Turbine Wakes
    Lee, S.
    Churchfield, M.
    Sirnivas, S.
    Moriarty, P.
    Nielsen, F. G.
    Skaare, B.
    Byklum, E.
    WAKE CONFERENCE 2015, 2015, 625
  • [4] Multirotor wind turbine wakes
    Bastankhah, Majid
    Abkar, Mahdi
    PHYSICS OF FLUIDS, 2019, 31 (08)
  • [5] Qualitative analysis of wind-turbine wakes over hilly terrain
    Hyvarinen, A.
    Segalini, A.
    WAKE CONFERENCE 2017, 2017, 854
  • [6] Modelling of wind turbine wakes over forests along the diurnal cycle
    Olivares-Espinosa, Hugo
    Arnqvist, Johan
    WAKE CONFERENCE 2023, 2023, 2505
  • [7] Turbulent Wind Turbine Wakes in a Wind Farm
    Brand, Arno J.
    Wagenaar, Jan Willem
    PROGRESS IN TURBULENCE AND WIND ENERGY IV, 2012, 141 : 231 - 234
  • [8] Dynamic soaring in wind turbine wakes
    Harzer, Jakob
    De Schutter, Jochem
    Diehl, Moritz
    Meyers, Johan
    EUROPEAN JOURNAL OF CONTROL, 2023, 74
  • [9] Stability of Floating Wind Turbine Wakes
    Kleine, V. G.
    Franceschini, L.
    Carmo, B. S.
    Hanifi, A.
    Henningson, D. S.
    WAKE CONFERENCE 2021, 2021, 1934
  • [10] Numerical modeling of wind turbine wakes
    Sorensen, JN
    Shen, WZ
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2002, 124 (02): : 393 - 399