Strain in InP/ZnSe, S core/shell quantum dots from lattice mismatch and shell thickness-Material stiffness influence

被引:28
|
作者
Rafipoor, Mona [1 ]
Tornatzky, Hans [2 ]
Dupont, Dorian [3 ]
Maultzsch, Janina [4 ]
Tessier, Mickael D. [3 ]
Hens, Zeger [3 ]
Lange, Holger [1 ]
机构
[1] Univ Hamburg, Inst Phys Chem, Hamburg, Germany
[2] Tech Univ Berlin, Inst Festkorperphys, Berlin, Germany
[3] Univ Ghent, Dept Chem, Phys & Chem Nanostruct, Ghent, Belgium
[4] Friedrich Alexander Univ Erlangen Nurnberg, Inst Phys Kondensierten Materie, Erlangen, Germany
来源
JOURNAL OF CHEMICAL PHYSICS | 2019年 / 151卷 / 15期
关键词
COLLOIDAL NANOCRYSTALS; INP;
D O I
10.1063/1.5124674
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We investigate the buildup of strain in InP quantum dots with the addition of shells of the lower-lattice constant materials ZnSe and ZnS by Raman spectroscopy. Both materials induce compressive strain in the core, which increases with increasing shell volume. We observe a difference in the shell behavior between the two materials: the thickness-dependence points toward an influence of the material stiffness. ZnS has a larger Young's modulus and requires less material to develop stress on the InP lattice at the interface, while ZnSe requires several layers to form a stress-inducing lattice at the interface. This hints at the material stiffness being an additional parameter of relevance for designing strained core/shell quantum dots. Published under license by AIP Publishing.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Interaction of plasma proteins with ZnSe and ZnSe@ZnS core-shell quantum dots
    Mir, Irshad Ahmad
    Rawat, Kamla
    Bohidar, H. B.
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2017, 520 : 131 - 137
  • [42] Efficient Photoelectrochemical Hydrogen Generation Using Eco-Friendly "Giant" InP/ZnSe Core/Shell Quantum Dots
    Liu, Jiabin
    Yue, Shuai
    Zhang, Hui
    Wang, Chao
    Barba, David
    Vidal, Francois
    Sun, Shuhui
    Wang, Zhiming M. M.
    Bao, Jiming
    Zhao, Haiguang
    Selopal, Gurpreet Singh
    Rosei, Federico
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (29) : 34797 - 34808
  • [43] Photoionization and third-order susceptibility of a neutral donor in ZnS/InP/ZnSe core/shell spherical quantum dots
    Xie, Wenfang
    PHYSICA B-CONDENSED MATTER, 2014, 449 : 57 - 60
  • [44] ZnSe core and ZnSe@ZnS core-shell quantum dots as platform for folic acid sensing
    Irshad Ahmad Mir
    Kamla Rawat
    Pratima R. Solanki
    H. B. Bohidar
    Journal of Nanoparticle Research, 2017, 19
  • [45] Antimicrobial and biocompatibility of highly fluorescent ZnSe core and ZnSe@ZnS core-shell quantum dots
    Irshad Ahmad Mir
    Hammad Alam
    Eepsita Priyadarshini
    Ramavatar Meena
    Kamla Rawat
    Paulraj Rajamani
    Meryam Sardar Rizvi
    H. B. Bohidar
    Journal of Nanoparticle Research, 2018, 20
  • [46] Effects of core size and shell thickness on phonon modes in GaAs/AlAs shell quantum dots
    Qin, G
    Ren, SF
    JOURNAL OF APPLIED PHYSICS, 2001, 89 (11) : 6037 - 6043
  • [47] ZnSe core and ZnSe@ZnS core-shell quantum dots as platform for folic acid sensing
    Mir, Irshad Ahmad
    Rawat, Kamla
    Solanki, Pratima R.
    Bohidar, H. B.
    JOURNAL OF NANOPARTICLE RESEARCH, 2017, 19 (07)
  • [48] Antimicrobial and biocompatibility of highly fluorescent ZnSe core and ZnSe@ZnS core-shell quantum dots
    Mir, Irshad Ahmad
    Alam, Hammad
    Priyadarshini, Eepsita
    Meena, Ramavatar
    Rawat, Kamla
    Rajamani, Paulraj
    Rizvi, Meryam Sardar
    Bohidar, H. B.
    JOURNAL OF NANOPARTICLE RESEARCH, 2018, 20 (07)
  • [49] Bandgap engineering of InP nanocrystal quantum dots through shell thickness and composition
    Dennis, Allison M.
    Piryatinski, Andrei
    Hollingsworth, Jennifer A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [50] Shell-dependent blinking behavior and fluorescence dynamics of single ZnSe/CdS core/shell quantum dots
    Guo, Xing
    Kuang, Yanmin
    Wang, Sheng
    Li, Zhaohan
    Shen, Huaibin
    Guo, Lijun
    NANOSCALE, 2018, 10 (39) : 18696 - 18705