Regularized Generalized Canonical Correlation Analysis: A Framework for Sequential Multiblock Component Methods

被引:64
|
作者
Tenenhaus, Michel [1 ]
Tenenhaus, Arthur [2 ,3 ]
Groenen, Patrick J. F. [4 ]
机构
[1] HEC Paris, Jouy En Josas, France
[2] Univ Paris Sud, L2S, Cent Supelec, Gif Sur Yvette, France
[3] Brain & Spine Inst, Paris, France
[4] Erasmus Univ, Rotterdam, Netherlands
关键词
consensus PCA; hierarchical PCA; MAXBET; MAXDIFF; MAXVAR; multiblock component methods; PLS path modeling; GCCA; RGCCA; SSQCOR; SUMCOR; PLS; VARIABLES; SETS; MODELS;
D O I
10.1007/s11336-017-9573-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new framework for sequential multiblock component methods is presented. This framework relies on a new version of regularized generalized canonical correlation analysis (RGCCA) where various scheme functions and shrinkage constants are considered. Two types of between block connections are considered: blocks are either fully connected or connected to the superblock (concatenation of all blocks). The proposed iterative algorithm is monotone convergent and guarantees obtaining at convergence a stationary point of RGCCA. In some cases, the solution of RGCCA is the first eigenvalue/eigenvector of a certain matrix. For the scheme functions x, , or and shrinkage constants 0 or 1, many multiblock component methods are recovered.
引用
收藏
页码:737 / 777
页数:41
相关论文
共 50 条
  • [21] Regularized Multiple-Set Canonical Correlation Analysis
    Yoshio Takane
    Heungsun Hwang
    Hervé Abdi
    Psychometrika, 2008, 73 : 753 - 775
  • [22] Regularized Multiple-Set Canonical Correlation Analysis
    Takane, Yoshio
    Hwang, Heungsun
    Abdi, Herve
    PSYCHOMETRIKA, 2008, 73 (04) : 753 - 775
  • [23] A Novel Generalized Fuzzy Canonical Correlation Analysis Framework for Feature Fusion and Recognition
    Yang, Jing
    Sun, Quan-Sen
    NEURAL PROCESSING LETTERS, 2017, 46 (02) : 521 - 536
  • [24] A Novel Generalized Fuzzy Canonical Correlation Analysis Framework for Feature Fusion and Recognition
    Jing Yang
    Quan-Sen Sun
    Neural Processing Letters, 2017, 46 : 521 - 536
  • [25] Robust generalized canonical correlation analysis
    Yan, He
    Cheng, Li
    Ye, Qiaolin
    Yu, Dong-Jun
    Qi, Yong
    APPLIED INTELLIGENCE, 2023, 53 (18) : 21140 - 21155
  • [26] Tensor generalized canonical correlation analysis
    Girka, Fabien
    Gloaguen, Arnaud
    Le Brusquet, Laurent
    Zujovic, Violetta
    Tenenhaus, Arthur
    INFORMATION FUSION, 2024, 102
  • [27] Robust generalized canonical correlation analysis
    He Yan
    Li Cheng
    Qiaolin Ye
    Dong-Jun Yu
    Yong Qi
    Applied Intelligence, 2023, 53 : 21140 - 21155
  • [28] Generalized constrained canonical correlation analysis
    Takane, Y
    Hwang, HS
    MULTIVARIATE BEHAVIORAL RESEARCH, 2002, 37 (02) : 163 - 195
  • [29] Multiway generalized canonical correlation analysis
    Gloaguen, Arnaud
    Philippe, Cathy
    Frouin, Vincent
    Gennari, Giulia
    Dehaene-Lambertz, Ghislaine
    Le Brusquet, Laurent
    Tenenhaus, Arthur
    BIOSTATISTICS, 2022, 23 (01) : 240 - 256
  • [30] Kernel Generalized Canonical Correlation Analysis
    Tenenhaus, Arthur
    Philippe, Cathy
    Frouin, Vincent
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 90 : 114 - 131