Mathematical model of the spatio-temporal dynamics of second messengers in visual transduction

被引:27
|
作者
Andreucci, D
Bisegna, P
Caruso, G
Hamm, HE
DiBenedetto, E [1 ]
机构
[1] Vanderbilt Univ, Dept Math, Stevenson Ctr, Biomath Study Grp, Nashville, TN 37240 USA
[2] Univ Roma La Sapienza, Dipartimento Metodi & Modelli Matemat, I-00161 Rome, Italy
[3] Univ Roma Tor Vergata, Dipartimento Ingn Civile, I-00133 Rome, Italy
[4] CNR, ITC, Rome, Italy
[5] Vanderbilt Univ, Med Ctr, Dept Pharmacol, Nashville, TN 37232 USA
关键词
D O I
10.1016/S0006-3495(03)74570-6
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
A model describing the role of transversal and longitudinal diffusion of cGMP and Ca2+ in signaling in the rod outer segment of vertebrates is developed. Utilizing a novel notion of surface-volume reaction and the mathematical theories of homogenization and concentrated capacity, the diffusion of cGMP and Ca2+ in the interdiscal spaces is shown to be reducible to a one-parameter family of diffusion processes taking place on a single rod cross section; whereas the diffusion in the outer shell is shown to be reducible to a diffusion on a cylindrical surface. Moreover, the exterior flux of the former serves as a source term for the latter, alleviating the assumption of a well-stirred cytosol. A previous model of visual transduction that assumes a well-stirred rod outer segment cytosol ( and thus contains no spatial information) can be recovered from this model by imposing a "bulk'' assumption. The model shows that upon activation of a single rhodopsin, cGMP changes are local, and exhibit both a longitudinal and a transversal component. Consequently, membrane current is also highly localized. The spatial spread of the single photon response along the longitudinal axis of the outer segment is predicted to be 3-5 mum, consistent with experimental data. This approach represents a tool to analyze pointwise signaling dynamics without requiring averaging over the entire cell by global Michaelis-Menten kinetics.
引用
收藏
页码:1358 / 1376
页数:19
相关论文
共 50 条
  • [1] Spatio-temporal dynamics of glycolysis in cell layers. A mathematical model
    Schuetze, Jana
    Wolf, Jana
    BIOSYSTEMS, 2010, 99 (02) : 104 - 108
  • [2] Spatio-temporal dynamics of foveal visual search
    Kapisthalam, Sanjana
    Poletti, Martina
    PERCEPTION, 2021, 50 (1_SUPPL) : 166 - 166
  • [3] The spatio-temporal dynamics of visual letter recognition
    Fiset, Daniel
    Blais, Caroline
    Arguin, Martin
    Tadros, Karine
    Ethier-Majcher, Catherine
    Bub, Daniel
    Gosselin, Frederic
    COGNITIVE NEUROPSYCHOLOGY, 2009, 26 (01) : 23 - 35
  • [4] Pandemic management by a spatio-temporal mathematical model
    Lazebnik, Teddy
    Bunimovich-Mendrazitsky, Svetlana
    Shami, Labib
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2023, 24 (06) : 2307 - 2324
  • [5] Spatio-temporal dynamics of a three interacting species mathematical model inspired in physics
    Sanchez-Garduno, Faustino
    Brena-Medina, Victor E.
    BIOLOGICAL PHYSICS, 2008, 978 : 115 - 134
  • [6] Visual mining and spatio-temporal querying in molecular dynamics
    Sourina, O
    Korolev, N
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2005, 2 (04) : 492 - 498
  • [7] Parallel implementation of a spatio-temporal visual saliency model
    Rahman, A.
    Houzet, D.
    Pellerin, D.
    Marat, S.
    Guyader, N.
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2011, 6 (01) : 3 - 14
  • [8] A spatio-temporal model of the selective human visual attention
    Le Meur, O
    Thoreau, D
    Le Callet, P
    Barba, D
    2005 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), VOLS 1-5, 2005, : 3201 - 3204
  • [9] Parallel implementation of a spatio-temporal visual saliency model
    A. Rahman
    D. Houzet
    D. Pellerin
    S. Marat
    N. Guyader
    Journal of Real-Time Image Processing, 2011, 6 : 3 - 14
  • [10] The Evolution of Meaning: Spatio-temporal Dynamics of Visual Object Recognition
    Clarke, Alex
    Taylor, Kirsten I.
    Tyler, Lorraine K.
    JOURNAL OF COGNITIVE NEUROSCIENCE, 2011, 23 (08) : 1887 - 1899