Mathematical model of the spatio-temporal dynamics of second messengers in visual transduction

被引:27
|
作者
Andreucci, D
Bisegna, P
Caruso, G
Hamm, HE
DiBenedetto, E [1 ]
机构
[1] Vanderbilt Univ, Dept Math, Stevenson Ctr, Biomath Study Grp, Nashville, TN 37240 USA
[2] Univ Roma La Sapienza, Dipartimento Metodi & Modelli Matemat, I-00161 Rome, Italy
[3] Univ Roma Tor Vergata, Dipartimento Ingn Civile, I-00133 Rome, Italy
[4] CNR, ITC, Rome, Italy
[5] Vanderbilt Univ, Med Ctr, Dept Pharmacol, Nashville, TN 37232 USA
关键词
D O I
10.1016/S0006-3495(03)74570-6
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
A model describing the role of transversal and longitudinal diffusion of cGMP and Ca2+ in signaling in the rod outer segment of vertebrates is developed. Utilizing a novel notion of surface-volume reaction and the mathematical theories of homogenization and concentrated capacity, the diffusion of cGMP and Ca2+ in the interdiscal spaces is shown to be reducible to a one-parameter family of diffusion processes taking place on a single rod cross section; whereas the diffusion in the outer shell is shown to be reducible to a diffusion on a cylindrical surface. Moreover, the exterior flux of the former serves as a source term for the latter, alleviating the assumption of a well-stirred cytosol. A previous model of visual transduction that assumes a well-stirred rod outer segment cytosol ( and thus contains no spatial information) can be recovered from this model by imposing a "bulk'' assumption. The model shows that upon activation of a single rhodopsin, cGMP changes are local, and exhibit both a longitudinal and a transversal component. Consequently, membrane current is also highly localized. The spatial spread of the single photon response along the longitudinal axis of the outer segment is predicted to be 3-5 mum, consistent with experimental data. This approach represents a tool to analyze pointwise signaling dynamics without requiring averaging over the entire cell by global Michaelis-Menten kinetics.
引用
收藏
页码:1358 / 1376
页数:19
相关论文
共 50 条
  • [41] Analyzing the dynamics of fractional spatio-temporal SEIR epidemic model
    Matouk, A. E.
    Ameen, Ismail Gad
    Gaber, Yasmeen Ahmed
    AIMS MATHEMATICS, 2024, 9 (11): : 30838 - 30863
  • [42] A computational model of spatio-temporal dynamics in depth filling-in
    Nishina, S
    Kawato, M
    NEURAL NETWORKS, 2004, 17 (02) : 159 - 163
  • [43] A Model of the Spatio-temporal Dynamics of Drosophila Eye Disc Development
    Fried, Patrick
    Sanchez-Aragon, Maximo
    Aguilar-Hidalgo, Daniel
    Lehtinen, Birgitta
    Casares, Fernando
    Iber, Dagmar
    PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (09)
  • [44] Numerical model of the spatio-temporal dynamics in a water strider group
    Kovalev, Alexander
    Filippov, Alexander E.
    Gorb, Stanislav N.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [45] Mathematical modelling of spatio-temporal glioma evolution
    Papadogiorgaki, Maria
    Koliou, Panagiotis
    Kotsiakis, Xenofon
    Zervakis, Michalis E.
    THEORETICAL BIOLOGY AND MEDICAL MODELLING, 2013, 10
  • [46] Superbinding: Spatio-temporal oscillatory dynamics
    Erol Başar
    Murat Özgören
    Canan Başar-Eroğlu
    Sirel Karakaş
    Theory in Biosciences, 2003, 121 (4) : 371 - 386
  • [47] Dynamics of Spatio-Temporal Binding in Rats
    Malet-Karas, Aurore
    Noulhiane, Marion
    Doyere, Valerie
    TIMING & TIME PERCEPTION, 2019, 7 (01) : 27 - 47
  • [48] Editorial: Spatio-temporal dynamics of Covid
    D'Urso, Pierpaolo
    Sahu, Sujit
    Stein, Alfred
    SPATIAL STATISTICS, 2022, 49
  • [49] Ultrafast spatio-temporal dynamics in semiconductors
    Giessen, H
    Vollmer, M
    Stolz, W
    Rühle, WW
    ULTRAFAST ELECTRONICS AND OPTOELECTRONICS, PROCEEDINGS, 2001, 49 : 38 - 40
  • [50] A flexible spatio-temporal model for air pollution with spatial and spatio-temporal covariates
    Lindstrom, Johan
    Szpiro, Adam A.
    Sampson, Paul D.
    Oron, Assaf P.
    Richards, Mark
    Larson, Tim V.
    Sheppard, Lianne
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2014, 21 (03) : 411 - 433