共 50 条
Connecting toric manifolds by conical Kahler-Einstein metrics
被引:7
|作者:
Datar, Ved
[1
]
Guo, Bin
[2
]
Song, Jian
[3
]
Wang, Xiaowei
[4
]
机构:
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Columbia Univ, Dept Math, New York, NY 10027 USA
[3] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[4] Rutgers State Univ, Dept Math & Comp Sci, Newark, NJ 07102 USA
基金:
美国国家科学基金会;
关键词:
Conical Kahler-Einstein metrics;
Toric manifolds;
MONGE-AMPERE EQUATIONS;
GREATEST LOWER BOUNDS;
RICCI CURVATURE;
SINGULARITIES;
VARIETIES;
FACTORIZATION;
STABILITY;
LIMITS;
D O I:
10.1016/j.aim.2017.10.035
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We give criterions for the existence of toric conical Kahler-Einstein and Kahler-Ricci soliton metrics on any toric manifold in relation to the greatest Ricci and Bakry-Emery-Ricci lower bound. We also show that any two toric manifolds with the same dimension can be joined by a continuous path of toric manifolds with conical Kahler Einstein metrics in the Gromov-Hausdorff topology. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:38 / 83
页数:46
相关论文