Connecting toric manifolds by conical Kahler-Einstein metrics

被引:7
|
作者
Datar, Ved [1 ]
Guo, Bin [2 ]
Song, Jian [3 ]
Wang, Xiaowei [4 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Columbia Univ, Dept Math, New York, NY 10027 USA
[3] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[4] Rutgers State Univ, Dept Math & Comp Sci, Newark, NJ 07102 USA
基金
美国国家科学基金会;
关键词
Conical Kahler-Einstein metrics; Toric manifolds; MONGE-AMPERE EQUATIONS; GREATEST LOWER BOUNDS; RICCI CURVATURE; SINGULARITIES; VARIETIES; FACTORIZATION; STABILITY; LIMITS;
D O I
10.1016/j.aim.2017.10.035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give criterions for the existence of toric conical Kahler-Einstein and Kahler-Ricci soliton metrics on any toric manifold in relation to the greatest Ricci and Bakry-Emery-Ricci lower bound. We also show that any two toric manifolds with the same dimension can be joined by a continuous path of toric manifolds with conical Kahler Einstein metrics in the Gromov-Hausdorff topology. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:38 / 83
页数:46
相关论文
共 50 条