Bose-Einstein condensates in symmetry breaking states

被引:61
|
作者
Castin, Y [1 ]
Herzog, C [1 ]
机构
[1] Ecole Normale Super, Lab Kastler Brossel, F-75231 Paris 5, France
关键词
Bose-Einstein condensates; broken symmetry; one-dimensional systems; interacting spins; Bethe ansatz; solitons;
D O I
10.1016/S1296-2147(01)01183-0
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider two models of interacting Bose gases: a gas of spin one particles in the ground state of a cubic box and a one-dimensional Bose gas with contact interactions. We show how to calculate exact eigenstates of the corresponding N-body Hamiltonians. Both models share the property of not leading to the formation of a Bose-Einstein condensate, even at zero temperature, in the strict sense of the existence of a single one-particle state with a macroscopic population. We show that a lot of physical insight can be gained on these two model systems by using the usual Hartree-Fock mean field approach: in this approximation. that we test against the exact result. everything happens as if a single realization of the system was a Bose-Einstein condensate in a state phi breaking the rotational or translational symmetry, and varying in a random way for any new experimental realization. (C) 2001 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:419 / 443
页数:25
相关论文
共 50 条
  • [1] Symmetry breaking in Bose-Einstein condensates
    Ueda, Masahito
    Kawaguchi, Yuki
    Saito, Hiroki
    Kanamoto, Rina
    Nakajima, Tatsuya
    [J]. ATOMIC PHYSICS 20, 2006, 869 : 165 - +
  • [2] SYMMETRY BREAKING IN BOSE-EINSTEIN CONDENSATES
    Ueda, Masahito
    [J]. PROCEEDINGS OF THE 9TH INTERNATIONAL SYMPOSIUM ON FOUNDATIONS OF QUANTUM MECHANICS IN THE LIGHT OF NEW TECHNOLOGY, 2009, : 5 - 6
  • [3] Spontaneous symmetry breaking in Bose-Einstein condensates
    Hegstrom, RA
    [J]. CHEMICAL PHYSICS LETTERS, 1998, 288 (2-4) : 248 - 252
  • [4] Time symmetry breaking in Bose-Einstein condensates
    Mendonca, J. T.
    Gammal, A.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (35)
  • [5] The symmetry breaking states and bifurcation of Bose-Einstein condensates in a double well
    Jia, XinYan
    Li, WeiDong
    Ezawa, Hiroshi
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (23) : 6023 - 6033
  • [6] Spontaneous symmetry breaking in spinor Bose-Einstein condensates
    Scherer, M.
    Luecke, B.
    Peise, J.
    Topic, O.
    Gebreyesus, G.
    Deuretzbacher, F.
    Ertmer, W.
    Santos, L.
    Klempt, C.
    Arlt, J. J.
    [J]. PHYSICAL REVIEW A, 2013, 88 (05):
  • [7] Symmetry breaking and singularity structure in Bose-Einstein condensates
    Commeford, K. A.
    Garcia-March, M. A.
    Ferrando, A.
    Carr, Lincoln D.
    [J]. PHYSICAL REVIEW A, 2012, 86 (02):
  • [8] Spontaneous Symmetry Breaking in Coupled Bose-Einstein Condensates
    Tasaki, Hal
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2020, 178 (02) : 379 - 391
  • [9] Symmetry breaking in Bose-Einstein condensates confined by a funnel potential
    Miranda, Bruno M.
    dos Santos, Mateus C. P.
    Cardoso, Wesley B.
    [J]. PHYSICS LETTERS A, 2022, 452
  • [10] Symmetry breaking in scalar, spinor, and rotating Bose-Einstein condensates
    Saito, Hiroki
    Kawaguchi, Yuki
    Ueda, Masahito
    [J]. NUCLEAR PHYSICS A, 2007, 790 : 737C - 741C