Bose-Einstein condensates in symmetry breaking states

被引:61
|
作者
Castin, Y [1 ]
Herzog, C [1 ]
机构
[1] Ecole Normale Super, Lab Kastler Brossel, F-75231 Paris 5, France
关键词
Bose-Einstein condensates; broken symmetry; one-dimensional systems; interacting spins; Bethe ansatz; solitons;
D O I
10.1016/S1296-2147(01)01183-0
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider two models of interacting Bose gases: a gas of spin one particles in the ground state of a cubic box and a one-dimensional Bose gas with contact interactions. We show how to calculate exact eigenstates of the corresponding N-body Hamiltonians. Both models share the property of not leading to the formation of a Bose-Einstein condensate, even at zero temperature, in the strict sense of the existence of a single one-particle state with a macroscopic population. We show that a lot of physical insight can be gained on these two model systems by using the usual Hartree-Fock mean field approach: in this approximation. that we test against the exact result. everything happens as if a single realization of the system was a Bose-Einstein condensate in a state phi breaking the rotational or translational symmetry, and varying in a random way for any new experimental realization. (C) 2001 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:419 / 443
页数:25
相关论文
共 50 条
  • [21] Bose-Einstein condensates on a ring with periodic scattering length: Spontaneous symmetry breaking and entanglement
    Qian, Lisa C.
    Wall, Michael L.
    Zhang, Shaoliang
    Zhou, Zhengwei
    Pu, Han
    [J]. PHYSICAL REVIEW A, 2008, 77 (01)
  • [22] Spontaneous symmetry breaking induced by interaction in linearly coupled binary Bose-Einstein condensates
    dos Santos, Mateus C. P.
    Cardoso, Wesley B.
    [J]. NONLINEAR DYNAMICS, 2023, 111 (04) : 3653 - 3664
  • [23] Spontaneous Symmetry Breaking in Coupled Bose–Einstein Condensates
    Hal Tasaki
    [J]. Journal of Statistical Physics, 2020, 178 : 379 - 391
  • [24] Symmetry breaking in binary Bose-Einstein condensates in the presence of an inhomogeneous artificial gauge field
    Hejazi, S. Sahar S.
    Polo, Juan
    Sachdeva, Rashi
    Busch, Thomas
    [J]. PHYSICAL REVIEW A, 2020, 102 (05)
  • [25] SYMMETRY BREAKING IN IDEAL BOSE-EINSTEIN GAS
    HOOFT, AHT
    DEBOER, J
    [J]. PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES B-PHYSICAL SCIENCES, 1970, 73 (05): : 433 - &
  • [26] Bose-Einstein condensation and spontaneous symmetry breaking
    Lieb, Elliott H.
    Seiringer, Robert
    [J]. REPORTS ON MATHEMATICAL PHYSICS, 2007, 59 (03) : 389 - 399
  • [27] Bose-Einstein condensation and gauge symmetry breaking
    Yukalov, V. I.
    [J]. LASER PHYSICS LETTERS, 2007, 4 (09) : 632 - 647
  • [28] Quantum superposition states of Bose-Einstein condensates
    Cirac, JI
    Lewenstein, M
    Molmer, K
    Zoller, P
    [J]. PHYSICAL REVIEW A, 1998, 57 (02): : 1208 - 1218
  • [29] Experimenting with topological states of Bose-Einstein condensates
    Raman, Chandra
    [J]. CURRENT TOPICS IN ATOMIC, MOLECULAR AND OPTICAL PHYSICS, 2006, : 35 - 50
  • [30] Dark states of dressed Bose-Einstein condensates
    Lee, ES
    Geckeler, C
    Heurich, J
    Gupta, A
    Cheong, KI
    Secrest, S
    Meystre, P
    [J]. PHYSICAL REVIEW A, 1999, 60 (05): : 4006 - 4011