Symmetry breaking and singularity structure in Bose-Einstein condensates

被引:4
|
作者
Commeford, K. A. [1 ]
Garcia-March, M. A. [1 ,2 ]
Ferrando, A. [1 ,3 ]
Carr, Lincoln D. [1 ,4 ]
机构
[1] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA
[2] Natl Univ Ireland Univ Coll Cork, Dept Phys, Cork, Ireland
[3] Univ Valencia, Dept Opt, E-46100 Burjassot, Valencia, Spain
[4] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany
来源
PHYSICAL REVIEW A | 2012年 / 86卷 / 02期
基金
美国国家科学基金会;
关键词
VORTICES; LINES; DYNAMICS; WAVES;
D O I
10.1103/PhysRevA.86.023627
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We determine the trajectories of vortex singularities that arise after a single vortex is broken by a discretely symmetric impulse in the context of Bose-Einstein condensates in a harmonic trap. The dynamics of these singularities are analyzed to determine the form of the imprinted motion. We find that the symmetry-breaking process introduces two effective forces: a repulsive harmonic force that causes the daughter trajectories to be ejected from the parent singularity and a Magnus force that introduces a torque about the axis of symmetry. For the analytical noninteracting case we find that the parent singularity is reconstructed from the daughter singularities after one period of the trapping frequency. The interactions between singularities in the weakly interacting system do not allow the parent vortex to be reconstructed. Analytic trajectories were compared to the actual minima of the wave function, showing less than 0.5% error for an impulse strength of v = 0.00005. We show that these solutions are valid within the impulse regime for various impulse strengths using numerical integration of the Gross-Pitaevskii equation. We also show that the actual duration of the symmetry-breaking potential does not significantly change the dynamics of the system as long as the strength is below v = 0.0005.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Symmetry breaking in Bose-Einstein condensates
    Ueda, Masahito
    Kawaguchi, Yuki
    Saito, Hiroki
    Kanamoto, Rina
    Nakajima, Tatsuya
    [J]. ATOMIC PHYSICS 20, 2006, 869 : 165 - +
  • [2] SYMMETRY BREAKING IN BOSE-EINSTEIN CONDENSATES
    Ueda, Masahito
    [J]. PROCEEDINGS OF THE 9TH INTERNATIONAL SYMPOSIUM ON FOUNDATIONS OF QUANTUM MECHANICS IN THE LIGHT OF NEW TECHNOLOGY, 2009, : 5 - 6
  • [3] Spontaneous symmetry breaking in Bose-Einstein condensates
    Hegstrom, RA
    [J]. CHEMICAL PHYSICS LETTERS, 1998, 288 (2-4) : 248 - 252
  • [4] Bose-Einstein condensates in symmetry breaking states
    Castin, Y
    Herzog, C
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE IV PHYSIQUE ASTROPHYSIQUE, 2001, 2 (03): : 419 - 443
  • [5] Time symmetry breaking in Bose-Einstein condensates
    Mendonca, J. T.
    Gammal, A.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (35)
  • [6] Spontaneous symmetry breaking in spinor Bose-Einstein condensates
    Scherer, M.
    Luecke, B.
    Peise, J.
    Topic, O.
    Gebreyesus, G.
    Deuretzbacher, F.
    Ertmer, W.
    Santos, L.
    Klempt, C.
    Arlt, J. J.
    [J]. PHYSICAL REVIEW A, 2013, 88 (05):
  • [7] Spontaneous Symmetry Breaking in Coupled Bose-Einstein Condensates
    Tasaki, Hal
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2020, 178 (02) : 379 - 391
  • [8] Symmetry breaking in Bose-Einstein condensates confined by a funnel potential
    Miranda, Bruno M.
    dos Santos, Mateus C. P.
    Cardoso, Wesley B.
    [J]. PHYSICS LETTERS A, 2022, 452
  • [9] Symmetry breaking in scalar, spinor, and rotating Bose-Einstein condensates
    Saito, Hiroki
    Kawaguchi, Yuki
    Ueda, Masahito
    [J]. NUCLEAR PHYSICS A, 2007, 790 : 737C - 741C
  • [10] The symmetry breaking states and bifurcation of Bose-Einstein condensates in a double well
    Jia, XinYan
    Li, WeiDong
    Ezawa, Hiroshi
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (23) : 6023 - 6033